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 Introduction 


CONCURRENT CLEAN is a practical applicable general purpose lazy pure functional programming language suited for the 
development of real world applications.  


CLEAN (Brus et al., 1987; Nöcker et al., 1991; Plasmeijer and Van Eekelen, 1993) is well-known for its many features 
and its fast compiler producing very efficient code (Smetsers et al., 1991). CLEAN runs on a PC  (Windows 2000, ‘98, ’95, 
WindowsNT). There are also versions running on the Mac and Linux. 


In Clean we have incorporated those features we felt people really need to write real world programs (such as records, 
arrays, higher order types, type classes, type constructor classes and much more) based on our own experience with 
writing complicated applications.  


People already familiar with other functional programming languages (such as Haskell; (Hudak et al., 1992), Gofer/Hugs 
(Jones, 1993), Miranda (Turner, 1985) and SML (Harper et al., 1986)) will have no difficulty to program in Clean. We 
hope that you will enjoy Clean's rich collection of features, Clean's compilation speed and the quality of the produced 
code (we generate native code for all platforms we support).  


Clean has many features among which some very special ones. Functional languages are usually implemented using 
graph rewriting techniques. Clean is the only functional languages which basic semantics is defined in terms of Term 
Graph Rewriting (Barendregt et al., 1987; Sleep et al., 1993, Eekelen et al., 1997) thus providing a better framework for 
controlling the time space behaviour of functional programs. Of particular importance for practical use is Clean’s Unique-
ness Type System (Barendsen and Smetsers, 1993a) enabling the incorporation of destructive updates of arbitrary ob-
jects within a pure functional framework and the creation of direct interfaces with the outside world.  


CLEAN’s "unique" features have made it possible to predefine (in CLEAN) a sophisticated and efficient I/O library (Achten 
and Plasmeijer, 1992 & 1995). The CLEAN I/O library enables a CLEAN programmer to specify interactive window based 
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I/O applications on a very high level of abstraction. The library forms a platform independent interface to window 
systems: one can port window based I/O applications written in CLEAN to different platforms without any modification of 
source code. 


In the new 1.0 I/O library call-back functions and I/O definitions can be defined on arbitray local states thus providing an 
object-oriented style of programming (Achten, 1996; Achten and Plasmeijer, 1997). Different kind of call-back functions 
and I/O definitions can be active at the same time. This makes it possible to combine different interactive CLEAN 
programs into a new application (a kind of multi-tasking within the same application). The applications can be regarded 
as lightweight processes which can communicate via files, shared state or message passing primitives ((a)synchronous 
message passing, remote procedure call). All this is provided in a pure, sequential functional world in which the call-back 
functions act as indivisible event handlers. 


 More Information on Clean 


There is a separate manual in preparation describing the standard libraries (including the I/O library) which are available 
for CLEAN. See our pages on the net (www.cs.kun.nl/~clean). 


A book on functional programming in CLEAN is being written in collaboration with the Universities of Utrecht, Leiden and 
the polytechnical Universities of Arnhem and Leeuwarden. The book contains lots of case studies. A draft version of this 
book is available on the net (www.cs.kun.nl/~clean).  


The basic concepts behind Clean (albeit version 0.8) as well as an exploination of the implementation techniques used 
can be found in Plasmeijer and Van Eekelen (Adisson-Wesley, 1993). 


There are many papers on the concepts introduced by the CLEAN group (such as term graph rewriting (Barendregt et al., 
1987), lazy copying (van Eekelen et al., 1991), abstract reduction (Nöcker, 1993), uniqueness typing (Barendsen and 
Smetsers, 1993, 1996), CLEAN's I/O concept (Achten, 1996 & 1997), Parallel CLEAN (Kesseler, 1991 & 1996). For the 
most recent information on papers and information about CLEAN please check our web pages (www.cs.kun.nl/~clean).  


 About this Language Report 


In this report the syntax and semantics of CLEAN version 1.3 are explained. We always give a motivation why we have 
included a certain feature. Although the report is not intended as introduction into the language, we did our best to make 
it as readable as possible. Nevertheless, one sometimes has to work through several sections spread all over the report. 


At several places in this report context free syntax fragments of CLEAN are given. We sometimes repeat fragments which 
are also given elsewhere just to make the description clearer (e.g. in the uniqueness typing chapter we repeat parts of 
the syntax for the classical types). We hope that this is not confusing. The complete collection of context free grammar 
rules are summarised in Appendix A. 


 Some Remarks on the Clean Syntax 


The syntax of CLEAN is similar to the one used in most other modern functional languages. However, there are a couple 
of small syntactic differences we want to point out here for people who don't like to read language reports. 


In CLEAN the arity of a function is reflected in its type. When a function is defined its uncurried type is specified! To avoid 
any confusion we want to explicitly state here that in CLEAN there is no restriction whatsoever on the curried use of 
functions. However, we don't feel a need to express this in every type. Actually, the way we express types of functions 
more clearly reflects the way curried functions are internally treated. 
 
E.g., the standard map function (arity 2) is specified in CLEAN as follows: 
 
map::(a -> b) [a] -> [b] 
map f []  = [] 
map f [x:xs] = [f x:map f xs] 


Each predefined structure such as a list, a tuple, a record or array has its own kind of brackets: lists are always de-
notated with square brackets […], for tuples the usual parentheses are used (…,…), curly braces are used for records 
(indexed by field name) as well as for arrays (indexed by number). 
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In types funny symbols can appear like., u:, *, ! which can be ignored and left out if one is not interested in uniqueness 
typing or strictness. 


There are only a few keywords in CLEAN leading to a heavily overloaded use of : and = symbols: 
 
function::argstype -> restype   // type specification of a function 
function pattern | guard = rhs   // definition of a function 
 
selector = graph      // definition of a constant/CAF/graph 
 
function args :== rhs     // definition of a macro 
 
::Type args = typedef     // an algebraic data type definition 
::Type args :== typedef    // a type synonym definition 
::Type args       // an abstract type definition 


As is common in modern functional languages, there is a lay-out rule in CLEAN (see 2.3). For reasons of portability it is 
assumed that a tab space is set to 4 white spaces and that a non-proportional font is used. 
 
Function definition in CLEAN making use of the lay-out rule. 
 
primes:: [Int] 
primes = sieve [2..] 
where 
 sieve:: [Int] -> [Int] 
 sieve [pr:r] = [pr:sieve (filter pr r)] 
 
 filter:: Int [Int] -> [Int] 
 filter pr [n:r] 
 | n mod pr == 0 = filter pr r 
 | otherwise  = [n:filter pr r] 


 Notational Conventions Used in this Report 


The following notational conventions are used in this report. Text is printed in Microsoft Sans Seril 9pts, 
the context free syntax descriptions are given in  Microsoft Sans Seril 9pts, 
examples of Clean programs are given in Courier New 9pts, 
 
• Semantical restrictions are always given in a bulleted (•) list-of-points. When these restrictions are not obeyed they 


will almost always result in a compile-time error. In very few cases the restrictions can only be detected at run-time 
(array index out-of-range, partial function called outside the domain). 


The following notational conventions are used in the context-free syntax descriptions: 
 
[notion]   means that the presence of notion is optional 
{notion}   means that notion can occur zero or more times 
{notion}+   means that notion occurs at least once 
{notion}-list   means one or more occurrences of notion separated by comma's 
terminals  are printed in 9 pts courier 
keywords   are printed in 9 pts courier 
terminals  that can be left out in lay-out mode are printed in 9 pts courier 
~    is used for concatenation of notions 
{notion}/ ~str   means the longest expression not containing the string str 


All CLEAN examples given in this report assume that the lay-out dependent mode has been chosen which means that 
redundant semi-colons and curly braces are left out (see 2.3.3). 


 How to Obtain Clean  


CLEAN and the INTEGRATED DEVELOPMENT ENVIRONMENT (IDE) can be used free of charge. They can be obtained 


• via World Wide Web (www.cs.kun.nl/~clean) or 
• via ftp (ftp.cs.kun.nl in directory pub/Clean).  
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CLEAN is available on several platforms. Please check our WWW-pages regularly to see the latest news. New versions 
of CLEAN in general appear first on WINDOWS and later on MAC systems. Versions for Linux platforms appear less 
frequently. 


 Current State of the Clean System 


Release 1.3.1 (September 2001).  
- There are no significant changes to the previous release of 1997. The lay-out of the manual has been changed and 


hyperlinks are added such that the manual is easier to use on a screen. This manual will be used as a base for the 
new CLEAN 2.0 manual. CLEAN 2.0 differs significantly from CLEAN 1.3.  


----------------------------------------------------------------------------------------------------------------------- 


Previous Releases. The first release of CLEAN was publically available in 1987 and had version number 0.5 (at that time 
we thought half of the work was done, ;-)). At that time, CLEAN was only thought as an intermediate language. Many 
releases followed. One of them was version 0.8 which is used in the Plasmeijer & Van Eekelen Bible (Adisson-Wesley, 
1993). 


 Copyright, Authors and Credits 


CONCURRENT CLEAN and the CONCURRENT CLEAN DEVELOPMENT SYSTEM are a product of  


HILT - HIGH LEVEL SOFTWARE TOOLS B.V.,  


The Netherlands. 


HILT is a Dutch company owned by the CLEAN team founded to ensure excellent technical support for commercial 
environments. HILT furthermore educates in functional programming and developes commercial applications using 
CLEAN.  


CLEAN, CONCURRENT CLEAN and the CONCURRENT CLEAN DEVELOPMENT SYSTEM, copyright 1987 - 2001, HILT B.V., 
The Netherlands. 


CLEAN is a spin-off of the research performed by the research group on FUNCTIONAL PROGRAMMING LANGUAGES, 
COMPUTING SCIENCE INSTITUTE, at the UNIVERSITY OF NIJMEGEN under the supervision of prof. dr. ir. Rinus Plasmeijer. 


The CONCURRENT CLEAN System is developed by: 


 
Peter Achten:    Object I/O library 
John van Groningen:   Code generators (Mac (Motorola, PowerPC), PC (Intel), Sun (Sparc)),  
       CLEAN compiler, Low level interfaces, all machine wizarding. 
Eric Nöcker:     Strictness analyser via abstract reduction 
Sjaak Smetsers:    CLEAN compiler, 
       All type systems (including uniqueness typing and type classes),  
Ron Wichers Schreur:   CLEAN Compiler, Testing,  
       CLEAN distribution on the net. 
Marko van Eekelen:   CLEAN semantics 
Rinus Plasmeijer:    Overall language design and implementation supervision. 


Special thanks to the following people: 


Christ Aarts, Steffen van Bakel, Erik Barendsen, Henk Barendregt, Pieter Hartel, Marco Kesseler, Hans Koetsier, Pieter 
Koopman, Eric Nöcker, Leon Pillich, Ronan Sleep and all the CLEAN users who helped us to get a better system. 


Many thanks to the following sponsors: 
 
- the Dutch Technology Foundation (STW); 
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- the Dutch Foundation for Scientific Research (NWO); 
- the International Academic Centre for Informatics (IACI); 
- Kropman B.V., Installation Techniques, Nijmegen, The Netherlands; 
- Hitachi Advanced Research Laboratories, Japan; 
- the Dutch Ministry of Science and Education (the Parallel Reduction Machine project (1984-1987)) who initiated 


the CONCURRENT CLEAN research; 
- Esprit Basic Research Action (project 3074, SemaGraph: the Semantics and Pragmatics of Graph Rewriting (1989-


1991)); 
- Esprit Basic Research Action (SemaGraph II working group 3646 (1992-1995));  
- Esprit Parallel Computing Action (project 4106, (1990-1991)); 
- Esprit II (TIP-M project area II.3.2, Tropics: TRansparent Object-oriented Parallel Information Computing System 


(1989-1990)). 


A system like CLEAN cannot be produced without an enormous investment in time, effort and money. We would 
therefore like to thank all commercial CLEAN users who are decent enough to pay the license royalties. 


 Final Remarks 


We hope that CLEAN indeed enables you to program your applications in a convenient and efficient way. We will 
continue to improve the language and the system. We greatly appreciate your comments and suggestions for further 
improvements. 
 


October 1997 
 
                 Rinus Plasmeijer and Marko van Eekelen 
 
 
Affiliation: HILT Dep. of Software Technology 
 High Level Software Tools B.V.  
 
Mail address: Universitair Bedrijven Centrum, University of Nijmegen, 
 Toernooiveld 100, Toernooiveld 1, 
 6525 EC Nijmegen, 6525 ED Nijmegen, 
 The Netherlands. The Netherlands. 
 
e-mail: rinus@cs.kun.nl rinus@cs.kun.nl 
 marko@cs.kun.nl marko@cs.kun.nl 
 
Phone: +31 6 502 66544 +31 24 3652644 
Fax: +31 24 3652525 +31 24 3652525 
 
CLEAN on internet: www.cs.kun.nl/~clean 
CLEAN on ftp: ftp.cs.kun.nl in pub/Clean 
Questions about CLEAN: clean@cs.kun.nl 
Subscription mailing list:: clean@cs.kun.nl, subject:: subscribe 











 


 


 


   


 Table of Contents 


 
 
 


Preface i 
Introduction i 
More Information on Clean ii 
About this Language Report ii 
Some Remarks on the Clean Syntax ii 
Notational Conventions Used in this Report iii 
How to Obtain Clean iii 
Current State of the Clean System iv 
Copyright, Authors and Credits iv 
Final Remarks v 


Table of Contents vii 


Basic Semantics 1 
1.1 Graph Rewriting 1 


1.1.1 A Small Example 2 
1.2 Global Graphs 4 
1.3 Key Features of Clean 4 


Defining Modules 7 
2.1 Identifiers, Scopes and Name Spaces 7 


2.1.1 Naming Conventions of Identifiers 7 
2.1.2 Scopes and Name Spaces 8 
2.1.3 Nesting of Scopes 8 


2.2 Modular Structure of Clean Programs 9 
2.3 Implementation Modules 9 


2.3.1 The Main or Start Module 9 
I/O Using the Console 9 
I/O on the Unique World 10 


2.3.2 Scope of Global Definitions in Implementation Modules 10 
2.3.3 Begin and End of a Definition: the Lay-Out Rule 11 


2.4 Definition Modules 12 
2.5 Importing Definitions 13 


2.5.1 Explicit Imports of Definitions 13 
2.5.2 Implicit Imports of Definitions 14 


2.6 System Definition and Implementation Modules 14 







viii CLEAN LANGUAGE REPORT VERSION 1.3.1 


 


Defining Functions 15 
3.1 Defining Functions 15 
3.2 Patterns 16 


3.2.1 Constructor Patterns 16 
3.2.2 Simple Constructor Patterns 17 
3.2.3 Variables and Wildcards in Patterns 17 
3.2.4 Constant Values of Basic Type as Pattern 17 
3.2.5 List Patterns 18 
3.2.6 Tuple Patterns 18 
3.2.7 Record Patterns 18 
3.2.8 Array Patterns 19 


3.3 Guards 19 
3.4 Expressions 20 


3.4.1 Applications 20 
3.4.2 Constructor or Function Name 21 
3.4.3 Graph Variables 21 
3.4.4 Creating Constant Values of Basic Type 21 
3.4.5 Creating Lists 22 


Simple Lists 22 
DotDot Expressions 23 
List Comprehensions 23 


3.4.6 Creating Tuples 24 
3.4.7 Creating Records and Selection of Record Fields 24 


Simple Records 24 
Record Update 25 
Selection of a Record Field 25 


3.4.8 Creating Arrays and Selection of field Elements 26 
Simple Array 26 
Array Update 27 
Selection of an Array Element 29 


3.4.9 Lambda Abstraction 29 
3.4.10 Case Expression and Conditional Expression 30 
3.4.11 Let Expression: Local Definitions for Expressions 30 


3.5 Local Definitions 31 
3.5.1 Where Block: Local Definitions for a Function Alternative 31 
3.5.2 With Block: Local Definitions for a Guarded Alternative 32 
3.5.3 Defining Local Functions 33 
3.5.4 Defining Local Constants 33 


Selectors 34 
3.6 Special Local Definitions 35 


3.6.1 Strict Let Expression: Strict Local Constants 35 
3.6.2 Let-Before Expression: Local Constants for a Guard 35 


Defining Types 39 
4.1 Predefined Types 39 


4.1.1 Basic Types 39 
4.1.2 Predefined Abstract Types 40 
4.1.3 List Types 40 
4.1.4 Tuple Types 40 
4.1.5 Array Types 41 
4.1.6 Arrow Types 41 


4.2 Defining New Types 41 
4.2.1 Defining Algebraic Data Types 41 


Defining Infix Data Constructors 42 
Using Higher Order Types 42 
Defining Algebraic Data Types with Existentially Quantified Variables 43 
Semantic Restrictions on Algebraic Data Types 44 







TABLE OF CONTENTS ix 


 


4.2.2 Defining Record Types 44 
4.2.3 Defining Synonym Types 45 
4.2.4 Defining Abstract Data Types 46 


4.3 Typing Functions 46 
4.3.1 Typing Curried Functions 47 
4.3.2 Typing Operators 48 
4.3.3 Typing Partial Functions 48 


4.4 Typing Overloaded Functions 48 
4.4.1 Type Classes 49 
4.4.2 Functions Defined in Terms of Overloaded Functions 50 
4.4.3 Instances of Type Classes Defined in Terms of Overloaded Functions 51 
4.4.4 Type Constructor Classes 51 
4.4.5 Generic Instances 52 
4.4.6 Default Instances 52 
4.4.7 Defining Derived Members in a Class 53 
4.4.8 A Shorthand for Defining Overloaded Functions 53 
4.4.9 Classes Defined in Terms of Other Classes 54 
4.4.10 Exporting Type Classes 54 
4.4.11 Semantic Restrictions on Type Classes 55 
4.4.12 The Costs of Overloading 55 


4.5 Defining Uniqueness Types 55 
4.5.1 Basic Ideas Behind Uniqueness Typing 56 
4.5.2 Attribute Propagation 58 
4.5.3 Defining New Types with Uniqueness Attributes 59 
4.5.4 Uniqueness and Sharing 60 


Higher Order Uniqueness Typing 62 
Uniqueness Type Coercions 63 


4.5.5 Combining Uniqueness Typing and Overloading 63 
Constructor Classes 64 


4.5.6 Higher-Order Type Definitions 66 
4.5.7 Destructive Updates using Uniqueness Typing 67 


Annotations and Directives 69 
5.1 Annotations to Change Lazy Evaluation into Strict Evaluation 69 


5.1.1 Advantages and Disadvantages of Lazy versus Strict Evaluation 69 
5.1.2 Strict and Lazy Context 70 
5.1.3 Space Consumption in Strict and Lazy Context 70 
5.1.4 Time Consumption in Strict and Lazy Context 71 
5.1.5 Changing Lazy into Strict Evaluation 71 


Functions with Strict Arguments 72 
Strictness Annotations in Type Definitions 72 
Strictness Annotations on Instances of Predefined Type 73 
Strictness Annotations on Tuple Instances 73 
Strictness Annotations on Array Instances 74 
Strictness Annotations on List Instances 74 
5.2 Defining Graphs on the Global Level 75 
5.3 Defining Macros 75 
5.4 Process Annotations 76 


5.4.1 Process Creation 77 
5.4.2 Process Communication 77 


5.5 Efficiency Tips 78 


Context-Free Syntax Description 81 
A.1 Clean Program 81 
A.2 Import Definition 81 
A.3 Function Definition 82 
A.4 Macro Definition 84 







x CLEAN LANGUAGE REPORT VERSION 1.3.1 


 


A.5 Type Definition 84 
A.6 Class Definition 85 
A.7 Names 85 
A.8 Denotations 86 


Lexical Structure 87 
B.1 Lexical Program Structure 87 
B.2 Comments 87 
B.3 Reserved Keywords and Symbols 87 


Bibliography 91 


Index 93 


 







 


 


 


  Chapter 1 


 Basic Semantics 
1.1 Graph Rewriting 


1.2 Global Graphs 


1.3 Key Features of Clean 


 


The semantics of CLEAN is based on Term Graph Rewriting Systems (Barendregt, 1987; Plasmeijer and Van Eekelen, 
1993). This means that functions in a CLEAN program semantically work on graphs instead of the usual terms. This 
enabled us to incorporate CLEAN’s typical features (definition of cyclic data structures, lazy copying, uniqueness typing) 
which would otherwise be very difficult to give a proper semantics for. However, in many cases the programmer does not 
need to be aware of the fact that he/she is manipulating graphs. Evaluation of a CLEAN program takes place in the same 
way as in other lazy functional languages. One of the "differences" between CLEAN and other functional languages is 
that when a variable occurs more than once in a function body, the semantics prescribe that the actual argument is 
shared (the semantics of most other languages do not prescribe this although it is common practice in any 
implementation of a functional language). Furthermore, one can label any expression to make the definition of cyclic 
structures possible. So, people familiar with other functional languages will have no problems writing CLEAN programs. 


When larger applications are being written, or, when CLEAN is interfaced with the non-functional world, or, when 
efficiency counts, or, when one simply wants to have a good understanding of the language it is good to have some 
knowledge of the basic semantics of CLEAN which is based on term graph rewriting. In this chapter a short introduction 
into the basic semantics of CLEAN is given. An extensive treatment of the underlying semantics and the implementation 
techniques of CLEAN can be found in Plasmeijer and Van Eekelen (1993). 


1.1 Graph Rewriting 


A CLEAN program basically consists of a number of graph rewrite rules (function definitions) which specify how a given 
graph (the  nitial expression) has to be rewritten  


A graph is a set of nodes. Each node has a defining node-identifier (the node-id). A node consists of a symbol and a 
(possibly empty) sequence of applied node-id's (the arguments of the symbol)  Applied node-id's can be seen as refer-
ences (arcs) to nodes in the graph, as such they have a direction: from the node in which the node-id is applied to the 
node of which the node-id is the defining identifier. 


Each graph rewrite rule consists of a left-hand side graph (the pattern) and a right-hand side (rhs) consisting of a graph 
(the contractum) or just a single node-id (a redirection). In CLEAN rewrite rules are not comparing: the left-hand side (lhs) 
graph of a rule is a tree, i.e. each node identifier is applied only once, so there exists exactly one path from the root to a 
node of this graph. 


A rewrite rule defines a (partial) function The function symbol is the root symbol of the left-hand side graph of the rule 
alternatives. All other symbols that appear in rewrite rules, are constructor symbols. 


The program graph is the graph that is rewritten according to the rules. Initially, this program graph is fixed: it consists of 
a single node containing the symbol Start, so there is no need to specify this graph in the program explicitly. The part 
of the graph that matches the pattern of a certain rewrite rule is called a redex (reducible expression). A rewrite of a 
redex to its reduct can take place according to the right-hand side of the corresponding rewrite rule. If the right-hand side 
is a contractum then the rewrite consists of building this contractum and doing a redirection of the root of the redex to 
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root of the right-hand side. Otherwise, only a redirection of the root of the redex to the single node-id specified on the 
right-hand side is performed. A redirection of a node-id n1 to a node-id n2 means that all applied occurrences of n1 are 
replaced by occurrences of n2 (which is in reality commonly implemented by overwriting n1 with n2). 


A reduction strategy is a function that makes choices out of the available redexes. A reducer is a process that reduces 
redexes that are indicated by the strategy. The result of a reducer is reached as soon as the reduction strategy does not 
indicate redexes any more. A graph is in normal form if none of the patterns in the rules match any part of the graph. A 
graph is said to be in root normal form when the root of a graph is not the root of a redex and can never become the root 
of a redex. In general it is undecidable whether a graph is in root normal form. 


A pattern partially matches a graph if firstly the symbol of the root of the pattern equals the symbol of the root of the 
graph and secondly in positions where symbols in the pattern are not syntactically equal to symbols in the graph, the 
corresponding sub-graph is a redex or the sub-graph itself is partially matching a rule. A graph is in strong root normal 
form if the graph does not partially match any rule. It is decidable whether or not a graph is in strong root normal form. A 
graph in strong root normal form does not partially match any rule, so it is also in root normal form. 


The default reduction strategy used in CLEAN is the functional reduction strategy. Reducing graphs according to this 
strategy resembles very much the way execution proceeds in other lazy functional languages: in the standard lambda 
calculus semantics the functional strategy corresponds to normal order reduction. On graph rewrite rules the functional 
strategy proceeds as follows: if there are several rewrite rules for a particular function, the rules are tried in textual order; 
patterns are tested from left to right; evaluation to strong root normal form of arguments is forced when an actual argu-
ment is matched against a corresponding non-variable part of the pattern. A formal definition of this strategy can be 
found in (Toyama et al., 1991). 


1.1.1 A Small Example 


Consider the following CLEAN program: 
 
Add Zero z  = z      (1) 
Add (Succ a) z = Succ (Add a z)   (2) 
 
Start   = Add (Succ o) o 
     where 
      o = Zero    (3) 


In CLEAN a distinction is between function definitions (graph rewriting rules) and graphs (constant definitions). A 
semantic equivalent definition of the program above is given below where this distinction is made explicit ("=>" indicates 
a rewrite rule whereas "=:" is used for a constant (sub-) graph definition  
 
Add Zero z  => z      (1) 
Add (Succ a) z => Succ (Add a z)   (2) 
 
Start   => Add (Succ o) o 
     where 
      o =: Zero   (3) 


These rules are internally translated to a semantically equivalent set of rules in which the graph structure on both left-
hand side as right-hand side of the rewrite rules has been made explicit by adding node-id's. Using the set of rules with 
explicit node-id's it will be easier to understand what the meaning is of the rules in the graph rewriting world.  
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x =: Add y z 
y =: Zero  => z      (1) 
x =: Add y z 
y =: Succ a => m =: Succ n 
    n =: Add a z     (2) 
 
x =: Start => m =: Add n o 
    n =: Succ o 
    o =: Zero     (3) 


The fixed initial program graph that is in memory when a program starts is the following: 


The initial graph in linear notation: 
 
@DataRoot =: Graph @StartNode 
@StartNode =: Start 
 


The initial graph in pictorial notation: 


 


To distinguish the node-id’s appearing in the rewrite rules from the node-id’s appearing in the graph the latter always 
begin with a ‘@’. 


The initial graph is rewritten until it is in normal form. Therefore a CLEAN program must at least contain a " start rule" that 
matches this initial graph via a pattern. The right-hand side of the start rule specifies the actual computation. In this start 
rule in the left-hand side the symbol Start is used. However, the symbols Graph and Initial (see next Section) are 
internal, so they cannot actually be addressed in any rule. 


The patterns in rewrite rules contain formal node-id’s. During the matching these formal nodeid’s are mapped to the ac-
tual node-id’s of the graph  After that the following semantic actions are performed: 


The start node is the only redex matching rule (3). The contractum can now be constructed: 


The contractum in linear notation: 
 
@A =: Add  @B @C 
@B =: Succ @C 
@C =: Zero 


The contractum in pictorial notation: 


 
 


All applied occurrences of @StartNode will be replaced by occurrences of @A. The graph after rewriting is then: 


The graph after rewriting: 
 
@DataRoot  =: Graph @A 
@StartNode  =: Start 
@A =: Add  @B @C 
@B =: Succ @C 
@C =: Zero 


Pictorial notation: 


 
 


This completes one rewrite. All nodes that are not accessible from @DataRoot are garbage and not considered any 
more in the next rewrite steps. In an implementation once in a while garbage collection is performed in order to reclaim 
the memory space occupied by these garbage nodes. In this example the start node is not accessible from the data root 
node after the rewrite step and can be left out. 
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The graph after garbage collection: 
 
@DataRoot  =: Graph @A 
@A =: Add  @B @C 
@B =: Succ @C 
@C =: Zero 


Pictorial notation : 


 
 


The graph accessible from @DataRoot still contains a redex. It matches rule 2 yielding the expected normal form: 


The final graph: 
 
@DataRoot =: Graph @D 
@D =: Succ @C 
@C =: Zero 


Pictorial notation : 


 


The fact that graphs are being used in CLEAN gives the programmer the ability to explicitly share terms or to create cyclic 
structures. In this way time and space efficiency can be obtained. 


1.2 Global Graphs 


Due to the presence of global graphs in CLEAN the initial graph in a specific CLEAN program is slightly different from the 
basic semantics. In a specific CLEAN program the initial graph is defined as: 
 
@DataRoot  =: Graph @StartNode @GlobId1 @GlobId2 … @GlobIdn 
@StartNode  =: Start 
@GlobId1  =: Initial 
@GlobId2  =: Initial 
… 
@GlobIdn  =: Initial 


The root of the initial graph will not only contain the node-id of the start node, the root of the graph to be rewritten, but it 
will also contain for each global graph (see 5.2) a reference to an initial node (initialised with the symbol Initial). All 
references to a specific global graph will be references to its initial node or, when it is rewritten, they will be references to 
its reduct. 


1.3 Key Features of Clean 


On top of the Graph Rewriting System a full feautured functional programming language is defined. The most important 
features we added to CLEAN are: 


- CLEAN is a lazy, pure, higher order functional programming language with explicit graph rewriting semantics; one 
can explicitly define the sharing of structures (cyclic structures as well) in the language; 


- Although CLEAN is by default a lazy language one can smoothly turn it into a strict language to obtain optimal 
time/space behaviour: functions can be defined lazy as well as (partially) strict in their arguments; any (recursive) 
data structure can be defined lazy as well as (partially) strict in any of its arguments; 


- CLEAN is a strongly typed language based on an extension of the well-known Milner / Hindley / Mycroft type infer-
encing/checking scheme (Milner 1978; Hindley 1969; Mycroft 1984) including the common polymorphic types, ab-
stract types, algebraic types, and synonym types extended with a restricted facility for existentially quantified types; 


- Type classes and type constructor classes are provided to make overloaded use of functions and operators 
possible. 
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- CLEAN offers the following predefined types: integers, reals, Booleans, characters, strings, lists, tuples, records, 
arrays and files; 


- CLEAN’s key feature is a polymorphic uniqueness type inferencing system, a special extension of the Milner / 
Hindley / Mycroft type inferencing/checking system allowing a refined control over the single threaded use of 
objects; with this uniqueness type system one can influence the time and space behaviour of programs; it can be 
used to incorporate destructive updates of objects within a pure functional framework, it allows destructive 
transformation of state information, it enables efficient interfacing to the non-functional world (to C but also to I/O 
systems like X-Windows) offering direct access to file systems and operating systems; 


- CLEAN is a modular language allowing separate compilation of modules; one defines implementation modules and 
definition modules; there is a facility to implicitly and explicitly import definitions from other modules;  


- CLEAN offers a sophisticated I/O library with which window based interactive applications (and the handling of 
menus, dialogues, windows, mouse, keyboard, timers and events raised by sub-applications) can be specified 
compactly and elegantly on a very high level of abstraction; 


- Specifications of window based interactive applications can be combined such that one can create several 
applications (sub-applications or light-weight processes) inside one CLEAN application. Automatic switching 
between these sub-applications is handled in a similar way as under a multi-finder (all low level event handling for 
updating windows and switching between menus is done automatically); sub-applications can exchange 
information with each other (via files, via clipboard copy-paste like actions using shared state components, via 
asynchronous message passing) but also with other independently programmed (CLEAN or other) applications 
running on the same or even on a different host system; 


- Due to the strong typing of CLEAN and the obligation to initialise all objects being created run-time errors can only 
occur in a very limited number of cases: when partial functions are called with arguments out of their domain (e.g. 
dividing by zero), when arrays are accessed with indices out-of-range and when not enough memory (either heap 
or stack space) is assigned to a CLEAN application; 


- Programs written in CLEAN using the 0.8 I/O library can be ported without modification of source code to anyone of 
the many platforms we support (see the Preface for an overview).  


 











 


 


 


  Chapter 2 


 Defining Modules 
 


2.1 Identifiers, Scopes and Name Spaces 


2.2 Modular Structure of Clean Programs 


2.3 Implementation Modules 


2.4 Definition Modules 


2.5 Importing Definitions 


2.6 System Definition and Implementation Modules 


 


A CLEAN program is composed out of modules. Each module is stored in a file which contains CLEAN source code. 
There are implementation modules and definition modules, in the spirit of Modula-2 (Wirth, 1982). This module system is 
used for several reasons. 


First of all, the module structure is used to control the scope of definitions. The basic idea is that definitions only have a 
meaning in the implementation module they are defined in unless they are exported by the corresponding definition 
module.  


Having the exported definitions collected in a separate definition module has as advantage that one also obtains a self-
contained interface document one can reach out to others. The definition modules is a document which defines what can 
be used by others and how it can be used without revealing uninteresting implementation details. 


Furthermore, the module structure enables separate compilation which heavily reduces compilation time. An 
implementation module can be changed without the need of recompiling other modules. When the contents of a 
definition module is changed only those modules which are affected by this change need to be recompiled. 


In this Chapter we explain the module structure of CLEAN and the influence it has on the scope of definitions. New 
scopes can aslo be introduced inside modules. This is further explained in the Chapters 2 and 3. 


In the pictures in the subsections below nested scopes are indicated by nested boxes. 


2.1 Identifiers, Scopes and Name Spaces 
 


2.1.1 Naming Conventions of Identifiers 


In CLEAN we distinguish the following kind of identifiers. 
 
ModuleName = LowerCaseId  | UpperCaseId  | FunnyId 
FunctionName = LowerCaseId  | UpperCaseId  | FunnyId 
ConstructorName =       UpperCaseId  | FunnyId 
SelectorVariable = LowerCaseId 
Variable = LowerCaseId 
MacroName = LowerCaseId  | UpperCaseId  | FunnyId 
FieldName = LowerCaseId 
TypeName =       UpperCaseId  | FunnyId 
TypeVariable = LowerCaseId 
UniqueTypeVariable = LowerCaseId 
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ClassName = LowerCaseId  | UpperCaseId  | FunnyId 
 
LowerCaseId = LowerCaseChar~{IdChar} 
UpperCaseId = UpperCaseChar~{IdChar} 
FunnyId = {SpecialChar}+ 
 
LowerCaseChar = a | b | c | d | e | f | g | h | i | j 
 | k | l | m | n | o | p | q | r | s | t 
 | u | v | w | x | y | z 
UpperCaseChar = a | b | c | d | e | f | g | h | i | j 
 | k | l | m | n | o | p | q | r | s | t 
 | u | v | w | x | y | z 
SpecialChar = ~ | @ | # | $ | % | ^ | ? | !  
 | + | - | * | < | > | \ | / | | | & | = 
 | :  
IdChar = LowerCaseChar 
 | UpperCaseChar 
 | Digit 
 | _ | ` 
 
Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 


The convention used is that variables always start with a lowercase character while constructors and types always start 
with an uppercase character. The other identifiers can either start with an uppercase or a lowercase character. Notice 
that for the identifiers names can be used consisting of a combination of lower and/or uppercase characters but one can 
also define identifiers constructed from special characters like +, <, etc. (see Appendix A). These two kind of identifiers 
cannot be mixed. This makes it possible to leave out white space in expressions like a+1 (same as a + 1).  


2.1.2 Scopes and Name Spaces 


The scope is the program region in which definitions (e.g. function definition, class definition, macro definition, type def-
inition) with the identifiers introduced (e.g. function name, class name, class variable, macro name, type constructor 
name, type variable name) have a meaning.  


It must be clear from the context to which definition an identifier is referring. If all identifiers in a scope have different 
names than it will always be clear which definition is ment. However, one generally wants to have a free choice in 
naming identifiers. If identifiers belong to different name spaces no conflict can arise even if the same name is used. In 
CLEAN the following name spaces exist: 


- ModuleNames form a name space; 
- FunctionNames, ConstructorNames, SelectorVariables, Variables and MacroNames form a name space; 
- FieldNames form a name space; 
- TypeNames, TypeVariables and UniqueTypeVariables form a name space; 
- ClassNames form a name space. 


So, it is allowed to use the same identifier name for different purposes as long as the identifier belong to different name 
spaces.  


• Identifiers belonging to the same name space must all have different names within the same scope. Under certain 
conditions it is allowed to use the same name for different functions and operators (overloading, see 4.4). 


2.1.3 Nesting of Scopes 


Re-using identifier names is possible by introducing a new scope level. Scopes can be nested: within a scope a new 
nested scope can be defined. Within such a nested scope new definitions can be given, new names can be introduced. 
As usual it is allowed in a nested scope to re-define definitions or re-use names given in a surrounding scope:. When a 
name is re-used the old name and definition is no longer in scope and cannot be used in the new scope. A definition 
given or a name introduced in a (nested) scope has no meaning in surrounding scopes. It has a meaning for all scopes 
nested within it (unless they are redefined within such a nested scope). 
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2.2 Modular Structure of Clean Programs 


A CLEAN program consists of a collection of definition modules and  mplementation modules. An implementation module 
and a definition module correspond to each other if the names of the two modules are the same. The basic idea is that 
the definitions given in an implementation module only have a meaning in the module in which they are defined unless 
these definitions are exported by putting them into the corresponding definition module. In that case the definitions also 
have a meaning in those other modules in which the definitions are imported (see 2.5). 
 
CleanProgram = {Module}+ 
Module = DefinitionModule  
 | ImplementationModule 
DefinitionModule  = definition module ModuleName ; 
  {DefDefinition} 
 | system module ModuleName ; 
  {DefDefinition} 
ImplementationModule = [implementation] module ModuleName ; 
  {ImplDefinition} 


• An executable CLEAN program consists at least of one implementation module, the main or start module, which is 
the top-most module (root module) of a CLEAN program. 


• Each CLEAN module has to be put in a separate file. 
• The name of a module (i.e. the module name) should be the same as the name of the file (minus the suffix) in 


which the module is stored. 
• A definition module should have as.dcl as suffix, an implementation module should have as cl as suffix. 
• A definition module can have at most one corresponding implementation module. 
• Every implementation module (except the main module, see 2.3.1) must have a corresponding definition module. 


2.3 Implementation Modules 
 


2.3.1 The Main or Start Module 


• In the main module a Start rule has to be defined (see Chapter 1). 
• Only in the main module one can leave out the keyword implementation in the module header. In that case the 


implementation module does not need to have a corresponding definition module (which makes sense for a top-
most module). 


 
A very tiny but complete CLEAN program consisting of one implementation module. 
 
module hello 
 
Start = "Hello World!" 


Evaluation of a CLEAN program consists of the evaluation of the application defined in the right-hand side of the Start 
rule to normal form (see Chapter 1). The right-hand side of the Start rule is regarded to be the nitial expression to be 
computed.  


It is allowed to have a Start rule in other implementation modules as well. This can be handy for testing functions 
defined in such a module: to evaluate such a Start rule simply generate an application with the module as root and 
execute it. 


The definition of the left-hand side of the Start rule consists of the symbol Start with one optional argument (of type 
*World), which is the environment parameter which is necessary to write interactive applications.  


A CLEAN programs can run in two modes. 


 I/O Using the Console 


The first mode is a console mode. It is chosen when the Start rule is defined as a nullary function. 
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Start:: TypeOfStartFunction 
Start = …      // initial expression 


In the console mode, that part of the initial expression (indicated by the right-hand side of the Start rule) which is in root 
normal form (also called the head normal form or root stable form), is printed as soon as possible. The console mode 
can be used for instance to test or debug functions.  


One can choose to print the result of a Start expression with or without the data constructors. For example, the initial 
expression 
 
Start:: String 
Start = "Hello World!" 


in mode "show data constructors" will print: "Hello World!", in mode "don't show data constructors" it will print: 
Hello World! 


 I/O on the Unique World 


The second mode is the world mode. It is chosen when the optional additional parameter (which is of type *World) is 
added to the Start rule and delivered as result. 
 
Start:: *World -> *World 
Start w = …      // initial expression returning a changed world 


The world which is given to the initial expression is an abstract data structure, an abstract world of type *World which 
models the concrete physical world as seen from the program. The abstract world can in principle contain anything what 
a functional program needs to interact during execution with the concrete world. The world can be seen as a state and 
modifications of the world can be realised via state transition functions defined on the world or a part of the world. By re-
quiring that these state transition functions work on a unique world the modifications of the abstract world can directly be 
realized in the real physical world, without loss of efficiency and without losing referential transparency (see Chapter 4)   


The concrete way in which one can handle the world in CLEAN is determined by the system programmer. One way to 
handle the world is by using the predefined CLEAN I/O library which can be regarded as a platform independent mini 
operating system. It makes it possible to do file I/O, window based I/O, dynamic process creation and process 
communication in a pure functional language in an efficient way. The definition of the I/O library is treated in a separate 
document (Standard Libraries for CLEAN, Achten et al., 1997). 


2.3.2 Scope of Global Definitions in Implementation Modules 


In an implementation module the following global definitions can be specified in any order. 
 
ImplDefinition = ImportDef        // see 2.5 
 | FunctionDef        // see Chapter 3 
 | GraphDef        // see 3.5.4 
 | MacroDef        // see Chapter 5 
 | TypeDef         // see Chapter 4 
 | ClassDef         // see 4.4 


Definitions on the global level (= outermost level in the module,) have in principle the whole implementation module as 
scope (see Figure 2.1).  
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Figure 2.1 (Scope of global definitions inside an implementation module). 
 
implementation module XXX 
 
:: TypeName typevars = type_expression   // definition of a new type 
 
functionName:: type_of_args -> type_of_result // definition of the type of a function 
functionName args = expression     // definition of a function 
 
selector = expression       // definition of a constant graph 
 
class className = expression     // definition of a class 
 
macroName args =  expression     // definition of a macro 


Types can only be defined globally (see Chapter 4) and therefore always have a meaning in the whole implementation 
module. Type variables introduced on the left-hand side of a (algebraic, record, synonym, overload, class, instance, 
function, graph) type definition have the right-hand side of the type definition as scope. 


Functions, the type of these functions, constants (selectors) and macro's can be defined on the global level as well as on 
a local level in nested scopes. When defined globally they have a meaning in the whole implementation module. 
Arguments introduced on the left-hand side of a definition (formal arguments) only have a meaning in the corresponding 
right-hand side.  


Functions, the type of these functions, constants (selectors) and macro's can also be defined locally in a new scope. 
However, new scopes can only be introduced at certain points. In functional languages local definitions are by tradition 
defined by using let-expressions (definitions given before they are used in a certain expression, nice for a bottom-up 
style of programming) and where-blocks (definitions given afterwards, nice for a top-down style of programming). These 
constructs are explained in detail in Chapter 3. 


2.3.3 Begin and End of a Definition: the Lay-Out Rule 


CLEAN programs can be written in two modes: lay-out sensitive mode 'on' and 'off'. The lay-out sensitive mode is 
switched off when a semi-colon is specified after the module name. In that case each definition has to be ended with a 
semicolon ';'. A new scope has to begin with '{' and ends with a '}'. This mode is handy if CLEAN code is generated 
automatically (e.g. by a compiler). 
 
Example of a Clean program not using using the lay-out rule. 
 
module primes; 
 
import StdEnv; 
 
primes:: [Int]; 
primes = sieve [2..]; 
where 
{ sieve:: [Int] -> [Int]; sieve [pr:r] = [pr:sieve (filter pr r)]; 
 
 filter:: Int [Int] -> [Int]; 
 filter pr [n:r] | n mod pr == 0 = filter pr r; 
 | otherwise  = [n:filter pr r]; 
} 


Programs look a little bit old fashioned C-like in this way. Functional programmers generally prefer a more mathematical 
style. Hence, as is common in modern functional languages, there is a lay-out rule in CLEAN. When the definition of the 
module header of a module is not ended by a semicolon a CLEAN program has become lay-out sensitive. The lay-out 
rule assumes the omission of the semi-colon (';') that ends a definition and of the braces ('{' and '}') that are used to 
group a list of definitions. These symbols are automatically added according to the following rules:  


In lay-out sensitive mode the indentation of the first lexeme after the keywords let, #, let!, #!, of, where, or with 
determines the indentation that the group of definitions following the keyword has to obey. Depending on the indentation 
of the first lexeme on a subsequent line the following happens. A new definition is assumed if the lexeme starts on the 
same indentation (and a semicolon is inserted). A previous definition is assumed to be continued if the lexeme is in-
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dented more. The group of definitions ends (and a close brace is inserted) if the lexeme is indented less. Global 
definitions are assumed to start in column 0. 


We strongly advise to write programs in lay-out sensitive mode. For reasons of portability it is assumed that a tab space 
is set to 4 white spaces and that a non-proportional font is used. 
 
Same program using the lay-out sensitive mode. 
 
module primes 
 
import StdEnv 
 
primes:: [Int] 
primes = sieve [2..] 
where 
 sieve:: [Int] -> [Int] 
 sieve [pr:r] = [pr:sieve (filter pr r)] 
 
 filter:: Int [Int] -> [Int] 
 filter pr [n:r] 
 | n mod pr == 0 = filter pr r 
 | otherwise  = [n:filter pr r] 


2.4 Definition Modules 


The definitions given in an implementation module only have a meaning in the module in which they are defined. If you 
want to export a definition, you have to specify the definition in the corresponding definition module. Some definitions 
can only appear in implementation modules, not in definition modules. The idea is to hide the actual implementation from 
the outside world. The is good for software engineering reasons while another advantage is that an implementation 
module can be recompiled separately without a need to recompile other modules. Recompilation of other modules is 
only necessary when a definition module is changed. All modules depending on the changed module have to be 
recompiled as well. Implementations of functions, graphs and class instances are therefore only allowed in 
implementation modules. They are exported by only specifying their type definition in the definition module. Also the 
right-hand side of any type definition can remain hidden. In this way an abstract data type is created (see 4.2.4). 


In a definition module the following global definitions can be given in any order. 
 
DefDefinition = ImportDef        // see 2.5 
 | FunctionTypeDef       // see 4.3 
 | MacroDef        // see 5.3 
 | TypeDef         // see Chapter 4 
 | ClassDef         // see 4.4 
 | TypeClassInstanceExportDef    // see 4.4 


• The definitions given in an implementation module only have a meaning in the module in which they are defined 
(see 2.3) unless these definitions are exported by putting them into the corresponding definition module. In that 
case they also have a meaning in those other modules in which the definitions are imported (see 2.5). 


• The definitions (with exception of TypeClassInstanceExportDef's) given in a definition module have to be repeated 
in the corresponding implementation module (this restriction will be removed in a future version of CLEAN). 


• In the corresponding implementation module all exported definitions have to get an appropriate implemen-
tation(this holds for functions, abstract data types, class instances). 


• An abstract data type is exported by specifying the left-hand side of a type rule in the definition module. In the 
corresponding implementation module the abstract type has to be defined again but then right-hand side has to be 
defined as well. It can be either an algebraic type, record type or synonym type definition. For such an abstract 
data type only the name of the type is exported but not its definition. 


• A function, global graph or class instance is exported by repeating the type header in the definition module. For 
optimal efficiency it is recommended also to specify strictness annotations (see 5.1). For library functions it is 
recommended also to specify the uniqueness type attributes (see Chapter 4). The implementation of the function, 
graph, class instance has to be given in the implementation module.  
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Definition module. 
 
definition module ListOperations 
 
::complex      // abstract type definition 
 
re:: complex -> Real    // function taking the real part of complex number 
im:: complex -> Real    // function taking the imaginary part of complex 
mkcomplex:: Real Real -> Complex // function creating a complex number 
 
corresponding implementation module): 
 
implementation module ListOperations 
 
::complex :== (!Real,!Real)  // a type synonym 
 
re:: complex -> Real    // type of function followed by its implementation 
re (frst,_) = frst  
 
im:: complex -> Real 
im (_,scnd) = scnd  
 
mkcomplex:: Real Real -> Complex 
mkcomplex frst scnd = (frst,scnd)  


2.5 Importing Definitions 


Via an import statement a definition exported by a definition module (see 2.4) can be imported into any other (definition 
or implementation) module. There are two kind of import statements, explicit imports and implicit imports. 
 
ImportDef = ImplicitImportDef 
 | ExplicitImportDef 


A module depends on another module if it imports something from that other module  
• Cyclic dependencies of definition modules are prohibited, i.e. if a definition module M1 depends on another 


definition module M2 then M2 is not allowed to depend on M1. 


2.5.1 Explicit Imports of Definitions 


Explicit imports are import statements in which the modules to import from as well as the identifiers indicating the 
definitions to import are explicitly specified. 
 
ExplicitImportDef = from ModuleName import {Imports}-list ; 
Imports = FunctionName 
 | ConstructorName 
 | SelectorVariable 
 | FieldName 
 | MacroName 
 | TypeName 
 | ClassName 


All identifiers explicitly being imported in a definition or implementation module will be included in the global scope level 
(= outermost scope, see 2.3.2) of the module which does the import. Importing identifiers can cause error messages 
because the imported identifiers may be in conflict with other identifiers in this scope (remember that identifiers 
belonging to the same name space must all have different names within the same scope, see 2.1). This problem can be 
solved by renaming the internally defined identifiers or by renaming the imported identifiers (eg by adding an additional 
module layer just to rename things). 
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Explicit import. 
 
implementation module XXX 
 
from ListOperations import complex, re, im, mkcomplex 


2.5.2 Implicit Imports of Definitions 
 
ImplicitImportDef = import {ModuleName}-list ; 


Implicit imports are import statements in which only the module name to import from is mentioned. In this case all 
definitions that are exported from that module are imported as well as all definitions that on their turn are imported in the 
indicated definition module, and so on. So, all related definitions from various modules can be imported with one single 
import. This opens the possibility for definition modules to serve as a kind of 'pass-through' module  Hence, it is 
meaningful to have definition modules with import statements but without any definitions and without a corresponding 
implementation module.; 
 
Example of an implicit import: all (arithmetic) rules which are predefined can be imported easily with one import state-
ment. 
 
import StdEnv 


importing implicitly all definitions imported by the definition module 'StdEnv' which is defined below (note that defi-
nition module 'StdEnv' does not have a corresponding implementation module) : 
 
definition module MyStdEnv 
 
import 
 StdBool, StdChar, StdInt, StdReal, StdString 


All identifiers implicitly being imported in a definition or implementation module will be included in the global scope level 
(= outermost scope, see 2.3.2) of the module which does the import. Importing identifiers can cause error messages 
because the imported identifiers may be in conflict with other identifiers in this scope (remember that identifiers 
belonging to the same name space must all have different names within the same scope, see 2.1). This problem can be 
solved by renaming the internally defined identifiers or by renaming the imported identifiers (eg by adding an additional 
module layer just to rename things). 


2.6 System Definition and Implementation Modules 


System modules are special modules. A system definition module indicates that the corresponding implementation 
module is a system implementation module which does not contain ordinary CLEAN rules. In system implementation 
modules it is allowed to define foreign functions: the bodies of these foreign functions are written in another language 
than CLEAN. System implementation modules make it possible to create interfaces to operating systems, to file systems 
or to increase execution speed of heavily used functions or complex data structures. Typically, predefined function and 
operators for arithmetic and File I/O are implemented as system modules. 


System implementation modules may use machine code, C-code, abstract machine code (PABC-code) or code written 
in any other language. What exact is allowed is dependent from the CLEAN compiler used and the platform for which 
code is generated. The keyword code is reserved to make it possible to write CLEAN programs in a foreign language. 
This is not treated in this reference manual. 


When one writes system implementation modules one has to be very careful because the correctness of the functions 
can no longer be checked by the CLEAN compiler. Therefore, the programmer is now responsible for the following: 
! The function must be correctly typed. 
! When a function destructively updates one of its (sub-)arguments, the corresponding type of the arguments should 


have the uniqueness type attribute. Furthermore, those arguments must be strict. 
 







 


 


 


  Chapter 3 


 Defining Functions 
3.1 Defining Functions 


3.2 Patterns 


3.3 Guards 


3.4 Expressions 


3.5 Local Definitions 


3.6 Special Local Definitions 


In this Section function definitions are treated (actually: graph rewrite rules). Operator definitions are regarded as special 
kind of function definitions (see 3.1 and 4.3). The body of a function consists of a root expression (see 3.4). With help of 
patterns (see 3.2) and guards (see 3.3) a distinction can be made between several alternative definitions for a function. 
Functions and graphs can be defined locally in a function definition (see 3.5). For programming convenience (forcing 
evaluation, observation of unique objects and threading of sequencial operations) special let constructions are provided 
(see 3.6). 


3.1 Defining Functions 
 
FunctionDef = [FunctionTypeDef] DefOfFunction  // see Chapter 4 for typing functions 
DefOfFunction = {FunctionAltDef}+ 
FunctionAltDef = Function {Pattern}      // see 3.2 for patterns 
  {LetBeforeExpression}     // see 3.6 
  {{| Guard} =[>] FunctionBody}+   // see 3.3 for guards 
  [LocalFunctionAltDefs]     // see 3.5 
Function  = FunctionName      // ordinary function 
 | (FunctionName)      // operator function 
FunctionBody = [StrictLet]       // see 3.6 
  RootExpression ;      // see 3.4 
  [LocalFunctionDefs]     // see 3.5 


A function definition consist of one or more definitions of function alternatives (rewrite rules) which are tried in textual 
order. On the left-hand side of such a function alternative a pattern can be specified which can serve a whole sequence 
of guarded function bodies (called the rule alternatives)  The root expression (see 3.4) of a particular rule alternative is 
chosen for evaluation when 
+ the pattern on the left-hand side matches the corresponding actual arguments of the function application (see 3.2) 


and 
+ the optional guard (see 3.3) specified on the right-hand side evaluates to True. 
A function can be preceded by a definition of its type (see 4.3).  


• Function definitions are only allowed in implementation modules (see 2.3). 
• It is required that the function alternatives of a function are textually grouped together (separated by semi-colons 


when the lay-out sensitive mode is not chosen). 
• Each alternative of a function must start with the same function symbol. 
• The function name must in principle be different from other names in the same name space and same scope (see 


2.1). However, it is possible to overload functions and operators (see 4.4). 
• A function has a fixed arity, so in each rule the same number of formal arguments must be specified. Functions can 


be applied to any number of arguments though, as usual in higher order functional languages (see 3.4.1 and 4.3). 
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Function definition. 
 
module example        // module header 
import StdInt         // implicit import 
 
map:: (a -> b) [a] -> [b]      // type of map 
map f list = [f e \\ e <- list]     // definition of the function map 
 
square:: Int -> Int       // type of square 
square x = x * x        // definition of the function square 
 
Start:: [Int]         // type of Start rule 
Start = map square [1..1000]     // definition of the Start rule 


An operator is a function with arity two which can be used as infix operator (brackets are left out) or as ordinary prefix 
function (the operator name preceding its arguments has to be surrounded by brackets). 
• When an operator is used in infix position both arguments have to be present. Operators can be used in a curried 


way, but then they have to be used as ordinary prefix functions (see also 4.3.2). 
A constant function definition is a function defined with arity zero. 
 
Operator definition. 
 
(++) infixr 0:: [a] [a] -> [a] 
(++) []  ly = ly 
(++) [x:xs] ly = [x:xs ++ ly] 
 
(o) infixr 9:: (a -> b) (c -> a) -> (c -> b) 
(o) f g = \x -> f (g x) 


An operator has a precedence (0 through 9, default 9) and a fixity (infixl, infixr or just  infix; default 
infixl). This is defined in its type (see 4.3.2). See also 3.4.1. 


3.2 Patterns 


In this Section the different kind of formal arguments (patterns) that can be specified on the left-hand side of a function 
definition (rewrite rule definition) are described. A pattern generally consists of some data constructor with its optional 
arguments which on their turn can contain sub-patterns (see 3.2.1). A node-id variable can be attached to a pattern 
(using the symbol '=:') which makes it possible to identify (label) the whole pattern as well as its contents Bracketed pat-
terns are formal arguments that form a syntactic unit (see 3.2.2 - 3.2.6). 
 
Pattern = [Variable =:] BrackPattern 
BrackPattern = (GraphPattern)        // see 3.2.1 
 | Constructor         // see 3.2.2 
 | PatternVariable        // see 3.2.3 
 | BasicValuePattern       // see 3.2.4 
 | ListPattern         // see 3.2.5 
 | TuplePattern         // see 3.2.6 
 | RecordPattern        // see 3.2.7 
 | ArrayPattern         // see 3.2.8 


• It is possible that the specified patterns turn a function into a partial function (see 4.3.3). When a partial function is 
applied outside the domain for which the function is defined it will result into a run-time error. A compile time 
warning is generated that such a situation might arise. 


3.2.1 Constructor Patterns 
 
GraphPattern = Constructor {Pattern}       // Constructor pattern 
 | GraphPattern ConstructorName GraphPattern // Constructor operator 
 | Pattern          // a pattern in brackets 


A constructor pattern (see above) consists of a constant tag called a data constructor (see 3.4.1 and 4.2.1) with its op-
tional arguments which on its turn can contain sub-patterns  A constructor pattern forces evaluation of the corresponding 
actual argument to strong root normal form since the strategy has to determine whether the actual argument indeed is 
equal to the specified constructor. 
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• the data constructor must have been defined in an algebraic data type definition (see 4.2.1). 
 
Algebraic data type definition and constructor pattern in function definition. 
 
::Tree a = Node a (Tree a) (Tree a) 
  | Nil 
 
Mirror:: (Tree a) -> Tree a 
Mirror (Node e left right) = Node e (Mirror right) (Mirror left) 
Mirror Nil    = Nil 


Data constructors with arity two (see 3.1, see 4.2.1) can also be defined as infix constructors (or constructor operator). In 
a pattern match they can be written down in infix position as well.  
• When a constructor operator is used in infix position in a pattern match both arguments have to be present. 


Constructor operators can occur in a curried way, but then they have to be used as ordinary prefix constructors 
(see also 3.2.1 and 2.3). 


 
Algebraic type definition and constructor pattern in function definition. 
 
::Tree2 a = (/\) infixl 0 (Tree a) (Tree a) 
  | Value a 
 
Mirror:: (Tree2 a) -> Tree2 a 
Mirror (left/\right) = Mirror right/\Mirror left 
Mirror leaf   = leaf 


3.2.2 Simple Constructor Patterns 
 
Constructor = ConstructorName 
 | (ConstructorName) 


Constructor symbols without arguments are just simple zero-arity constant. They form a syntactic unit (for non-operators 
no brackets are needed in this case). Besides the brackets that can be omitted they behave just like other data construc-
tor patterns (see 3.4.2 and 3.2.1)  


3.2.3 Variables and Wildcards in Patterns 


A pattern variable can be a (node) variable or a wildcard  
 
PatternVariable = Variable 
 | _ 


A node variable is a formal argument of a function which matches on any concrete value of the corresponding actual 
argument and therefore it does not force evaluation of this argument. A wildcard is an anonymous node variable ("_") 
one can use to indicate that the corresponding argument is not used in the right-hand side of the function. The formal 
arguments of a function and the function body are contained in a new scope. See also 2.3.2 
 
functionName args = expression      


• All variable symbols introduced at the left-hand side of a function definition must have different names. 
 
Use of pattern variables. 
 
:: Complex :== (!Real,!Real)      // synonym type def 
 
realpart:: Complex -> Real 
realpart (re,_) = re        // re and _ are pattern variables 


3.2.4 Constant Values of Basic Type as Pattern 
 
BasicValuePattern = BasicValue 
BasicValue  = IntDenotation 
  | RealDenotation 
  | BoolDenotation 
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  | CharDenotation 


A constant value of predefined basic typeInt, Real, Bool or Char (see 4.1) can be specified as pattern  
• The denotation of such a value must obey the syntactic description given in Section 3.4.4. 
 
Use of basic values as pattern. 
 
nfib:: Int -> Int 
nfib 0 = 1 
nfib 1 = 1 
nfib n = 1 + nfib (n-1) * nfib (n-2) 


3.2.5 List Patterns 


An object of the predefined algebraic type list (see 3.4.5 and 4.1.3) can be specified as pattern  
 
ListPattern = [[{LGraphPattern}-list [: GraphPattern]]] 
LGraphPattern = GraphPattern 
 | CharsDenotation 


Notice that only simple list patterns can be specified on the left-hand side (one cannot use a dot-dot expression or list 
comprehension to define a list pattern). 
 
Use of list patterns, use of guards, use of variables to identify patterns and sub-patterns; merge merges two (sorted) 
lists into one (sorted) list. 
 
merge:: [Int] [Int] -> [Int] 
merge f [] = f 
merge [] s = s 
merge f=:[x:xs] s=:[y:ys] 
| x<y  = [x:merge xs s] 
| x==y  = merge f ys 
| otherwise = [y:merge f ys] 


3.2.6 Tuple Patterns 


An object of the predefined algebraic type tuple (see 3.4.6 and 4.1.4) can be specified as pattern  
 
TuplePattern = (GraphPattern,{GraphPattern}-list) 


3.2.7 Record Patterns 


An object of type record (see 3.4.7 and 4.2.2) can be specified as pattern. Only those fields which contents one would 
like to use in the right-hand side need to be mentioned in the pattern  
 
RecordPattern = {[TypeName |] {FieldName [= GraphPattern]}-list} 


• The type of the record must have been defined in a record type definition (see 4.2.2). 
• The field names specified in the pattern must be identical to the field names specified in the corresponding type. 
• When matching a record, the type contructor which can be used to disambiguate the record from other records, 


can only be left out if there is at least one field name is specified which is not being defined in some other record. 
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Use of record patterns. 
 
::Tree a  = Node (RecTree a) 
   | Leaf a 
::RecTree a = { elem :: a 
    , left :: Tree a 
    , right :: Tree a 
    } 
 
Mirror:: (Tree a) -> Tree a 
Mirror (Node tree=:{left=l,right=r}) = Node {tree & left=r,right=l} 
Mirror leaf       = leaf 
 
The first alternative of function Mirror defined in another equivalent way. 
 
Mirror (Node tree) = Node {tree & left=tree.right,right=tree.left} 
or  
Mirror (Node tree=:{left,right}) = Node {tree & left=right,right=left} 


3.2.8 Array Patterns 


An object of type array (see 3.4.8 and 4.1.5) can be specified as pattern. Notice that only simple array patterns can be 
specified on the left-hand side (one cannot use array comprehensions). Only those array elements which contents one 
would like to use in the right-hand side need to be mentioned in the pattern  
 
ArrayPattern = {{GraphPattern}-list} 
 | {{ArrayIndex = Variable}-list} 
 | StringDenotation 


• All array elements of an array need to be of same type. 
• An array  ndex must be an integer value between 0 and the number of elements of the array-1. Accessing an 


array with an index out of this range will result in a run-time error. 


It is allowed in the pattern to use an index expression in terms of the other formal arguments (of type Int) passed to the 
function to make a flexible array access possible.  
 
Use of array patterns. 
 
Swap:: !Int !Int !*(a e) ->.(a e) | Array a & ArrayElem e 
Swap i j a=:{[i]=ai,[j]=aj} = {a & [i]=aj,[j]=ai} 


3.3 Guards 
 
Guard = BooleanExpr 


A guard is a Boolean expression attached to a rule alternative that can be regarded as generalisation of the pattern 
matching mechanism: the alternative only matches when the patterns defined on the left hand-side match and its 
(optional) guard evaluates to True (see 3.1). Otherwise the next alternative is tried. Pattern matching always takes place 
before the guards are evaluated. 


The guards are tried in textual order. The alternative corresponding to the first guard that yields True will be evaluated. 
A right-hand side without a guard can be regarded to have a guard that always evaluates to True (the ‘otherwise’ or 
‘default’ case). In StdBool otherwise is predefined as synonym for True for people who like to emphasize the default 
option.  
• Only the last rule alternative of a function alternative can have no guard. 
• It is possible that the guards turn the function into a partial function (see 4.3.3). When a partial function is applied 


outside the domain for which the function is defined it will result into a run-time error. At compile time this cannot be 
detected. 
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Function definition with guards. 
 
filter:: Int [Int] -> [Int] 
filter pr [n:str] 
| n mod pr == 0 = filter pr str 
    = [n:filter pr str] 
 
Equivalent definition of previous filter. 
 
filter:: Int [Int] -> [Int] 
filter pr [n:str] 
| n mod pr == 0 = filter pr str 
| otherwise  = [n:filter pr str] 


Guards can be nested. When a guard on one level evaluates to True, the guards on a next level are tried.  
• To ensure that at least one of the alternatives of a nested guard will be successful, a nested guarded alternative 


must always have a  ‘default’  case as last alternative. 
 
Nested guard. 
 
example arg1 arg2 
| predicate11 arg1        // if predicate11 arg1 
 | predicate21 arg2 = calculate1 arg1 arg2  //  then (if predicate21 arg2  
 | predicate22 arg2 = calculate2 arg1 arg2  //  elseif predicate22 arg2 then  
      = calculate3 arg1 arg2  //  else …) 
| predicate12 arg1  = calculate4 arg1 arg2  // elseif predicate12 arg1 then … 


3.4 Expressions 


The main body of a function is called the root expression. The root expression is a graph expression. 
 
RootExpression = GraphExpr 
 
y is the root expression referring to a cyclic graph. 
 
ham:: [Int] 
ham = y  
where y = [1:merge (map ((*) 2) y) (merge (map ((*) 3) y) (map ((*) 5) y))]  


A  graph expression generally expresses an application of a function to its arguments or the (automatic) creation of a 
data structure simply by appying a data constructor to its arguments (see 3.4.1). A case expression and conditional ex-
pression are added for notational convenience (see 3.4.10). With a let expression new functions and graphs can be 
locally defined in an expression (see 3.4.11). One can optionally demand the interleaved or parallel evaluation of the ex-
pression by another process or on another processor (see Chapter 5)  
 
GraphExpr = [Process] Application      // see 3.4.1 
Application = {BrackGraph}+       // see 3.4.1 
 | GraphExpr Operator GraphExpr   // see 3.4.1 
BrackGraph = (GraphExpr)        // see 3.4.1 
 | ConstructorOrFunction     // see 3.4.2 
 | GraphVariable       // see 3.4.3 
 | BasicValue        // see 3.4.4 
 | List          // see 3.4.5 
 | Tuple         // see 3.4.6 
 | Record         // see 3.4.7 
 | RecordSelection       // see 3.4.7 
 | Array         // see 3.4.8 
 | ArraySelection       // see 3.4.8 
 | LambdaAbstr        // see 3.4.9 
 | CaseExpr        // see 3.4.10 
 | LetExpr         // see 3.4.11 


3.4.1 Applications 
 
Application = {BrackGraph}+       // application 
 | GraphExpr Operator GraphExpr   // operator application 
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Operator = FunctionName 
 | ConstructorName 


A (graph) application or graph expression in principle consists of the application of a function or data constructor to its 
(actual) arguments Each function or data constructor can be used in a curried way and can therefore be applied to any 
number (zero or more) of arguments (see 4.3). For convenience and efficiency special syntax is provided to denote va-
lues of data structures of predefined type (see 3.4.4 - 3.4.8). A function can only be rewritten if it is applied to a number 
of arguments equal to the arity of the function (see 3.1). 
• All expressions have to be of correct type (see Chapter 4). 
• All symbols that appear in an expression must have been defined somewhere within the scope in which the 


expression appears (see 2.1). 


Operators are special functions or constructors defined with arity two (see 4.3.2) which can be applied in infix position  
The precedence (0 through 9) and fixity (infixleft, infixright, infix) which can be defined in the type definition 
of the operators (see 4.3) determine the priority of the operator application in an expression. A higher precedence binds 
more tightly. When operators have equal precedence, the fixity determines the priority. In an expression an ordinary 
function application has a very high priority (10). Only selection of record elements and array elements (see 3.4.7 and 
3.4.8) binds more tightly (11). Besides that, due to the priority, brackets can sometimes be omitted, operator applications 
behave just like other applications (see 3.4.1). 
• It is not allowed to apply operators with equal precedence in an expression in such a way that their fixity con-


flict. So, when in a1 op1 a2 op2 a3 the operators op1 and op2 have the same prece-
dence a conflict arises when op1 is defined as infixr implying that the expression must be read as a1 op1 (a2 o
p2 a3) while op2 is defined as infixl implying that the expression must be read as (a1 op1 a2) op2 a3. 


• When an operator is used in infix position both arguments have to be present. Operators can be used in a curried 
way (applied to less than two arguments), but then they have to be used as ordinary prefix functions / constructors. 
When an operator is used as prefix function c.q. constructor, it has to be surrounded by brackets. 


3.4.2 Constructor or Function Name  
 
ConstructorOrFunction = Constructor 
 | Function 
Function = FunctionName 
 | (FunctionName) 
Constructor = ConstructorName 
 | (ConstructorName) 


Function and constructors applied on zero arguments just form a syntactic unit (for non-operators no brackets are nee-
ded in this case). Besides the brackets that can be omitted they behave just like other applications (see 3.4.1)  


3.4.3 Graph Variables 
 
GraphVariable = Variable 
 | SelectorVariable 


There are two kinds of variables which can appear in a graph expression: variables introduced as formal argument of a 
function (see 3.1 and 3.2) and selector variables (defined in a selector to identify parts of a graph expression, see 3.5.4)  
• There has to be a definition for each node variable and selector variable within in the scope of the graphs ex-


pression. 


3.4.4 Creating Constant Values of Basic Type 


In a graph expression constant values of basic type Int, Real, Bool or Char can be created. These predefined types 
introduced for reasons of efficiency and convenience are treated in Section 4.1.1. There is a special notation to denote a 
string (an unboxed array of characters, see 3.4.8) as well as to denote a list of characters (see 3.4.5). 
 
BasicValue  = IntDenotation 
  | RealDenotation 
  | BoolDenotation 
  | CharDenotation 
 
IntDenotation; = [Sign]~{Digit}+        // decimal number 
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 | [Sign]~ 0~{OctDigit}+       // octal number 
 | [Sign]~ 0x~{HexDigit}+      // hexadecimal number 
Sign = + | - | ~ 
RealDenotation = [Sign~]{Digit~}+.{~Digit}+[~E[~Sign]{~Digit}+] 
BoolDenotation = True | False 
CharDenotation = CharDel~AnyChar/ ~CharDel~CharDel 
CharsDenotation = CharDel~{AnyChar/ ~CharDel}+~CharDel 
StringDenotation = StringDel~{AnyChar/ ~StringDel}~StringDel 
 
AnyChar = IdChar | ReservedChar | Special 
ReservedChar = ( | ) | { | } | [ | ] | ; | , | . 
Special = \n | \r  | \f | \b    // newline,return,formf,backspace 
 | \t | \\ | \CharDel    // tab,backslash,character delete 
 | \StringDel        // string delete 
 | \{OctDigit}+        // octal number 
 | \x{HexDigit}+       // hexadecimal number 
 
OctDigit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 
HexDigit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
 | A | B | C | D | E | F 
 | a | b | c | d | e | f 
 
CharDel = ' 
StringDel = " 
 
Denotations. 
 
Integer (decimal):  0|1|2|…|8|9|10| … |-1|-2| …    
Integer (octal):   00|01|02|…|07|010| … |-01|-02| …    
Integer (hexadecimal):  0x0|0x1|0x2|…|0x8|0x9|0xA|0xB … |-0x1|-0x2| …    
Real:     0.0|1.5|0.314E10| …    
Boolean:     True | False      
Character:    'a'|'b'|…|'A'|'B'|…   
String:     "" | "Rinus"|"Marko"|…  
List of characters:  ['Rinus']|['Marko']|…  


3.4.5 Creating Lists 


Because lists are very convenient and frquently used data structure there are several syntactical constructs in CLEAN for 
creating lists including dot-dot expression and ZF-expressions. The predefined type list is treated in Section 4.1.3. 
 
List = ListDenotation 
 | DotDotexpression 
 | ZF-expression 


• A list expression must be of type list (see 4.1.3). 
• All elements of a list must be of the same type. 


 Simple Lists 
 
ListDenotation = [[{LGraphExpr}-list [: GraphExpr]]] 
LGraphExpr = GraphExpr 
 | CharsDenotation 


One way to create a list is by explicit enumeration of the list elements. List are constructed by adding one or more 
elements to an existing list. A special notation is provided for the frequently used list of characters (see also 3.2).  
 
Various ways to define a list with the integer elements 1,3,5,7,9. 
 
[1:[3:[5:[7:[9:[]]]]]] 
[1,3,5,7,9] 
[1:[3,5,7,9]] 
[1,3,5:[7,9]] 
 







DEFINING FUNCTIONS 23 


 


Various ways to define a list with the characters 'a', 'b' and 'c'. 
 
['a':['b':['c':[]]]] 
['a','b','c'] 
['abc'] 
['ab','c']  


 DotDot Expressions 
 
DotDotexpression = [GraphExpr [,GraphExpr]..[GraphExpr]] 


With a dot-dot expression the list elements can be enumerated by giving the first element (n1), an optional second 
element (n2) and an optional last element (e). The generated list is calculated as follows: 
 
from_then_to:: !a !a !a -> .[a] | Enum a 
from_then_to n1 n2 e 
| n1 <= n2 = _from_by_to n1 (n2-n1) e 
   = _from_by_down_to n1 (n2-n1) e 
where 
 from_by_to n s e 
 | n<=e = [n : _from_by_to (n+s) s e] 
   = [] 
 
 from_by_down_to n s e 
 | n>=e = [n : _from_by_down_to (n+s) s e] 
   = [] 


The step size is one by default. If no last element is specified an infinite list is generated.  
• Dotdot expression can only be used if one imports StdEnum from the standard library. 
• Dot-dot expressions are predefined on objects of type Int, Real and Char, but dot-dots can also be applied to 


any user defined data structure for which the class enumeration type has been instantiated (see CLEANs 
STANDARD LIBRARY). 


 
Alternative ways to define a list a dot dot expression. 
 
[1,3..9]          // [1,3,5,7,9] 
[1..9]          // [1,2,3,4,5,6,7,8,9] 
[1..]          // [1,2,3,4,5 and so on… 
['a'..'c']         // ['abc'] 


 List Comprehensions 
 
ZF-expression = [GraphExpr \\ {Qualifier}-list] 
Qualifier = Generators {|Guard} 
Generators = {Generator}-list 
 | Generator {& Generator} 
Generator = Selector <- ListExpr 
 | Selector <-: ArrayExpr 
Selector = BrackPattern     // for brack patterns see 3.2 
ListExpr = GraphExpr 
ArrayExpr = GraphExpr 
Guard = BooleanExpr 
BooleanExpr = GraphExpr 


With a list generator called a ZF-expression one can construct a list composed from elements drawn from other lists or 
arrays. With a list generator one can draw elements from a list. With an array generator one can draw elements from an 
array. One can define several generators in a row separated by a comma. The last generator in such a sequence will 
vary first. One can also define several generators in a row separated by a ‘&’. All generators in such a sequence will vary 
at the same time but the drawing of elements will stop as soon of one the generators is exhausted. This construct can be 
used instead of the zip-functions which are commonly used. Selectors are simple patterns to identify parts of a graph ex-
pression. They are explained in Section 3.5.4. Only those lists produced by a generator which match the specified 
selector are taken into account. Guards can be used as filter in the usual way   







24 CLEAN LANGUAGE REPORT VERSION 1.3.1 


 


The scope of the selector variables introduced on the left-hand side of a generator is such that the variables can be used 
in the guards and other generators that follow. All variables introduced in this way can be used in the expression before 
the \\ (see the picture below).  
 
 
[ expression \\  selector  <- expression 
   | guard 
   , selector  <- expression 
   | guard 
] 
 
ZF-expression: 
expr1 yields [(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2), (3,0), (3,1), 
(3,2)]  
expr2 yields [(0,0), (1,1), (2,2)].  
expr3 yields [(0,0), (1,0), (1,1), (2,0), (2,1), (2,2), (3,0), (3,1), (3,2), (3,3)]) 
 
expr1 = [(x,y) \\ x <- [0..3] , y <- [0..2]] 
expr2 = [(x,y) \\ x <- [0..3] & y <- [0..2]] 
expr3 = [(x,y) \\ x <- [0..3] , y <- [0..x]] 
 
ZF-expression: a well-know sort. 
 
sort:: [a] -> [a] | Ord a  
sort []  = [] 
sort [p:ps] = sort [x\\x<-ps|x<=p] ++ [p] ++ sort [x\\x<-ps|x>p] 
 
ZF-expression: converting an array into a list. 
 
ArrayA = {1,2,3,4,5} 
 
ListA = [a \\ a <-: ArrayA] 


3.4.6 Creating Tuples 


Tuples can be created that can be used to combine different (sub-)graphs into one data structure without being forced to 
define a new type for this combination. The elements of a tuple need not be of the same type. Tuples are in particular 
handy for functions that return multiple results. The predefined type tuple is treated in Section 4.1.4. 
 
Tuple = (GraphExpr,{GraphExpr}-list) 
 
Example of a Tuple. 
 
("this is a tuple with",3,['elements']) 


3.4.7 Creating Records and Selection of Record Fields 


A record is a tuple-like algebraic data structure that has the advantage that its elements can be selected by field name 
rather then by position. 
 
Record = RecordDenotation 
 | RecordUpdate 


 Simple Records 


The first way is to create a record is by explicitly define a value for each of its fields.  
 
RecordDenotation = {[TypeName|] {FieldName = GraphExpr}-list]} 
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Creation of a record . 
 
::Point  = { x:: Real      // record type definition 
    , y:: Real 
    } 
::ColorPoint = { p:: Point      // record type definition 
    , c:: Color 
    } 
::Color  = Red | Green | Blue    // algebraic type definition 
 
CreateColorPoint:: (Real,Real) Color -> ColorPoint // type of function 
CreateColorPoint (px,py) col = { c = col   // function creating a new record 
       , p = { x = px 
         , y = py 
         } 
       } 


• A record can only be used if its type has been defined in a record type definition (see 4.2.2); the field names used 
must be identical to the field names specified in the corresponding type. 


• When creating a record explicitly, the order in which the record fields are instantiated is irrelevant, but all fields 
have to get a value; the type of these values must be an instantiation of the corresponding type specified in record 
type definition. Curried use of records is not possible (see 4.2). 


• When creating a record, its type contructor that can be used to disambiguate the record from other records; the 
type constructor can be left out if there is at least one field name is specified which is not being defined in some 
other record. 


 Record Update 


The second way is to construct a new record out of an existing one (a functional record update).  
 
RecordUpdate = {[TypeName|][RecordExpr &][{FieldName {Selection} = GraphExpr}-list]} 
Selection = . FieldName 
 | . ArrayIndex 
RecordExpr = GraphExpr 
 
• The record expression must yield a record. 


The record written to the left of the & (r & f = v is pronounced as: r with for f the value v) is the record to be 
duplicated. On the right from the & the structures are specified in which the new record differs from the old one. A 
structure can be any field of the record or a selection of any field or array element of a record or array stored in this 
record. All other fields are duplicated and created implicitly. Notice that the functional update is not an update in the 
classical, destructive sense since a new record is created.  The functional update of records is performed very efficient 
such that we have not added support for destructive updates of records of unique type. The &-operator is strict in its ar-
guments. 
 
Updating a record within arecord using the functional update. 
 
MoveColorPoint:: ColorPoint (Real,Real) -> ColorPoint 
MoveColorPoint cp (dx,dy) = {cp & p.x = cp.p.x + dx, p.y = c.p.y + dy} 


 Selection of a Record Field 
 
RecordSelection = RecordExpr  [. TypeName] . FieldName {Selection} 
 | RecordExpr  [. TypeName] ! FieldName {Selection} 
Selection = . FieldName 
 | . ArrayIndex 


With a record selection (using the '.' symbol) one can select the value stored in the indicated record field. A "unique" 
selection using the '!' symbol returns a tuple containg the demanded record field and the original record. This type of 
record selection can be very handy for destructively updating of uniquely typed records with values which depend on the 
current contents of the record. Record selection binds more tightly (priority 11) than application (priority 10). 
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Record selection. 
 
GetPoint:: ColorPoint -> Point 
GetPoint cp = cp.p        // selection of a record field 
 
GetXPoint:: ColorPoint -> Real 
GetXPoint cp = cp.p.x        // selection of a record field 
 
GetXPoint2:: *ColorPoint -> (Real,.ColorPoint) 
GetXPoint2 cp = cp!p.x        // selection of a record field 


3.4.8 Creating Arrays and Selection of field Elements 


An array is a tuple/record-like data structure in which all elements are of the same type. Instead of selection by position 
or field name the elements of an array can be selected very efficiently in constant time by indexing . The update of arrays 
is done destructively in CLEAN and therefore arrays have to be unique (see Chapter 4) if one wants to use this feature. 
Arrays are very useful if time and space consumption is becoming very critical (CLEAN arrays are implemented very 
efficiently). If efficiency is not a big issue we recomment not to use arrays but to use lists instead: lists induce a much 
better programming style. Lists are more flexible and less error prone: array elements can only be accessed via indices 
and if you make a calculation error indices may point outside the array bounds. This is detected, but only at run-time. In 
CLEAN, array indices always start with 0. More dimensional arrays (e.g. a matrix) can be defined as an array of arrays. 


For efficiency reasons, arrays are available of several types: there are lazy arrays (type {a}), strict arrays (type {!a}) 
and unboxed arrays for elements of basic type (e.g. type {#Int}). All these arrays are considered to be of different type. 
By using the overloading mechanism (type constructor classes) one can still define (overloaded) functions which work on 
any of these arrays. The predefined type array is treated in Section 4.1.2.  
 
Array = ArrayDenotation 
 | ArrayUpdate 
 
• All elements of an array need to be of same type. 


 Simple Array 


A new array can be created in a number of ways. A direct way is to simply list the array elements.  
 
ArrayDenotation = {{GraphExpr}-list} 
 | StringDenotation 


By default a lazy array will be created. Arrays are created unique (the * or. attribute in front of the type, see Chapter 4) to 
make destructive updates possible. 


A lazy array is a box with pointers pointing to the array elements. One can also create a strict array (explicitly define its 
type as {!Int}), which will have the property that the elements to which the array box points will always be evaluated. 
One can furthermore create an unboxed array (explicitly define its type as {#Int}), which will have the property that the 
evaluated elements (which have to be of basic value) are stored directly in the array box itself. Clearly the last one is the 
most efficient representation (see also Chapter 5). 
 
Creating a lazy array, strict and unboxed unique array of integers with elements 1,3,5,7,9. 
 
MyLazyArray:: .{Int} 
MyLazyArray = {1,3,5,7,9} 
 
MyStrictArray:: .{!Int} 
MyStrictArray = {1,3,5,7,9} 
 
MyUnboxedArray:: .{#Int} 
MyUnboxedArray = {1,3,5,7,9} 
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Creating a two dimensional array, in this case a unique array of unique arrays of unboxed integers. 
 
MatrixA:: {.{#Int}} 
MatrixA = {{1,2,3,4},{5,6,7,8}} 


To make it possible to use operators such as array selection on any of these arrays (of actually different type) a type 
constructor class has been defined (in StdArray) which expresses that "some kind of array structure is created". The 
compiler will therefore deduce the following general type: 
 
Array:: .(a Int) | Array a 
Array = {1,3,5,7,9} 


A string is equivalent to an unboxed array of character {#Char}. A type synonym is defined in module StdString. 
Notice that this array is not unique, such that a destructive update of a string is not allowed. There is special syntax to 
denote strings (see 3.2).  
 
Some ways to define a string, i.e. an unboxed array of character. 
 
"abc" 
{'a','b','c'} 


There are a number of handy functions for the creation and manipulation of arrays predefined in CLEANs STANDARD 
LIBRARY. These functions are overloaded to be able to deal with any type of array. The class restrictions for these 
functions express that "an array structure is required" containing "an array element". 
 
Type of some predefined functions on Arrays. 
 
createArray :: !Int e ->.(a e) | Array a & ArrayElem e // size arg1, a.[i] = arg2 
size  :: (a e) -> Int | Array a & ArrayElem e  // number of elements in array 


 Array Update 


It is also possible to construct a new array out of an existing one (a functional array update).  
 
ArrayUpdate = { ArrayExpr & [{ArrayIndex {Selection} = GraphExpr}-list] [\\ {Qualifier}-list]} 
 | {[ArrayExpr &] GraphExpr \\ {Qualifier}-list} 
Selection = . FieldName 
 | . ArrayIndex 
ArrayExpr = GraphExpr 


Left from the & (a & [i] = v is pronounced as: array a with for a.[i] the value v) the old array has to be specified 
which has to be of unique type to make destructive updating possible. On the right from the & those array elements are 
listed in which the new array differs from the old one. One can change any eelement of the array or any field or array 
element of a record or array stored in the array. The &-operator is strict in its arguments. 


• An array expression must be of type array. 
• The array expression to the left of the update operator '&' should yield an object of type unique array. 
• An array index must be an integer value between 0 and the number of elements of the array-1. An index out of this 


range will result in a run-time error. 
• A unique array of any type created by an overloaded function cannot be converted to a non-unique array. 


Important: For reasons of efficiency we have defined the updates only on arrays which are of unique type (*{…}), such 
that the update can always be done destructively (!) which is semantically sound because the original unique array is 
known not to be used anymore (see 4.5)   
 
Creating an array with the integer elements 1,3,5,7,9 using the update operator. 
 
{CreateArray 5 0 & [0] = 1, [1] = 3, [2] = 5, [3] = 7, [4] = 9} 
{CreateArray 5 0 & [1] = 3, [0] = 1, [3] = 7, [4] = 9, [2] = 5} 


One can use an array comprehension or a list comprehension (see 3.4.5) to list these elements compactly in the same 
spirit as with an list comprehension. 
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Array comprehensions can be used in combination with the update operator. Used in combination with the update 
operator the original uniquely typed array is updated destructively. The combination of array comprehensions and update 
operator makes it possible to selectively update array elements on a high level of abstraction.  
   
Creating an array with the integer elements 1,3,5,7,9 using the update operator in combination with array and list 
comprehensions. 
 
{CreateArray 5 0 & [i] = 2*i+1 \\ i <- [0..4]} 
{CreateArray 5 0 & [i] = elem \\ elem <-: {1,3,5,7,9} & i <- [0..4]} 
{CreateArray 5 0 & elem \\ elem <-: {1,3,5,7,9}} 


Array comprehensions used without update operator automatically generate a whole new array. The size of this new 
array will be equal to the size of the first array or list generator from which elements are drawn. Drawn elements which 
are rejected by a corresponding guard result in an undefined array element on the corresponding position.  
 
Creating an array with the integer elements 1,3,5,7,9 using array and list comprehensions. 
 
{elem \\ elem <-: {1,3,5,7,9}} 
{elem \\ elem <-  [1,3,5,7,9]} 
 
Array creation, selection, update). The most general types have been defined. One can of course always restrict to a 
more specific type. 
 
MkArray:: !Int (Int -> e) ->.(a e) | Array a & ArrayElem e  
MkArray i f = {f j \\ j <- [0..i-1]} 
 
SetArray:: *(a e) Int e ->.(a e) | Array a & ArrayElem e 
SetArray a i v = {a & [i] = v} 
 
CA:: Int e ->.(a e) | Array a & ArrayElem e 
CA i e = createArray i e 
 
InvPerm:: {Int} ->.{Int} 
InvPerm a = {CA (size a) 0 & [a.[i]] = i \\ i <- [0..maxindex a]} 
 
ScaleArray:: e (a e) ->.(a e) | Array a & ArrayElem e & Arith e 
ScaleArray x a = {x * e \\ e <-: a} 
 
MapArray:: (a -> b) (ar a) ->.(ar b) | Array ar & ArrayElem a & ArrayElem b  
MapArray f a = {f e \\ e <-: a} 
 
inner:: (a e) (a e) ->.(a e) | Array a & ArrayElem e & Arith e 
inner v w  
| size v == size w = {vi * wi \\ vi <-: v & wi <-: w} 
| otherwise   = abort "cannot take inner product" 
 
ToArray:: [e] ->.(a e) | Array a & ArrayElem e 
ToArray list = {e \\ e <- list} 
 
ToList:: (a e) ->.[e] | Array a & ArrayElem e 
ToList array = [e \\ e <-: array] 
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Example of operations on 2 dimensional arrays generating new arrays. 
 
maxindex n :== size n - 1 
 
Adj:: {{#Int}} ->.{.{#Int}} 
Adj ma = {  {ma.[i,j] \\ i <- rowindex} \\ j <- colindex } 
where 
 rowindex = [0..maxindex ma] 
 colindex = [0..maxindex ma.[0]] 
 
Multiply:: {{#Int}} {{#Int}} ->.{.{#Int}} 
Multiply a b = {  {sum [a.[i,j]*b.[j,k] \\ j <- colindex] \\ k <- rowindex} 
    \\ i <- rowindex  
    } 
where 
 rowindex = [0..maxindex a] 
 colindex = [0..maxindex a.[0]] 
 
Updating unique arrays using a unique array selection. 
 
MyArray:: .{#Real} 
MyArray = {1.5,2.3,3.4} 
 
ScaleArrayElem:: *{#Real} Int Real -> .{#Real} 
ScaleArrayElem ar i factor 
# (elem,ar) = ar![i] 
= {ar & [i] = elem*factor} 
 
Scale2DArrayElem:: {*{#Real}} (Int,Int) Real -> {.{#Real}} 
Scale2DArrayElem ar (i,j) factor 
# (elem,ar)   = ar![i].[j] 
= {ar & [i].[j]  = elem*factor} 
 
Scale2DArrayElem2:: {*{#Real}} (Int,Int) Real -> {.{#Real}} 
Scale2DArrayElem2 ar (i,j) factor 
# (elem,ar)   = ar![i,j] 
= {ar & [i,j]  = elem*factor} 


 Selection of an Array Element 
 
ArraySelection = ArrayExpr. ArrayIndex {Selection} 
 | ArrayExpr! ArrayIndex {Selection} 
ArrayIndex = [{IntegerExpr}-list] 
IntegerExpr = GraphExpr 
Selection = . FieldName 
 | . ArrayIndex 


With an array selection (using the '.' symbol) one can select an array element. When an object a is of type Array, the 
ith element can be selected (computed) via a.[i]. Array selection is left-associative: a.[i,j,k] means 
((a.[i]).[j]).[k]. A "unique" selection using the '!' symbol returns a tuple containg the demanded array element 
and the original array. This type of array selection can be very handy for destructively updating of uniquely typed arrays 
with values which depend on the current contents of the array.  Array selection binds more tightly (priority 11) than 
application (priority 10). 


3.4.9 Lambda Abstraction 


Sometimes it can be convenient to define a tiny function in an expression "right on the spot". For this purpose one can 
use a lambda abstraction. An anonymous function is defined which can have several formal arguments which can be 
patterns as common in ordinary function definitions (see Chapter 3). However, only simple functions can be defined in 
this way: no guards, no rule alternatives, no local definitions. Since the dot is already used for record and array selection 
a '->' is ued to separate the formal arguments from the functionbody: 
 
LambdaAbstr = \ {Pattern} -> GraphExpr 


A lambda expression introduces a new scope (see 2.1). 
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The arguments of the anonemeous function being defined have the only a meaning in the corresponding functionbody. 
 
\ arg1 arg2 ... argn -> function_body 
 
Example of a Lambda expression. 
 
AddTupleList:: [(Int,Int)] -> [Int] 
AddTupleList list = map (\(x,y) -> x+y) list 


3.4.10 Case Expression and Conditional Expression 


For programming convenience a case expression and conditional expression are added. 
 
CaseExpr = case GraphExpr of 
  { {CaseAltDef}+ } 
 | if BrackGraph BrackGraph BrackGraph  
CaseAltDef = {Pattern} 
  {LetBeforeExpression} 
  {{| Guard} -> FunctionBody}+ 
  [LocalFunctionAltDefs] 


In a case expression first the discriminating expression is evaluated after which the case alternatives are tried in textual 
order. Case alternatives are similar to functionalternatives. This is not so strange because a case expression is internally 
translated to a function definition (see the example below). Each alternative contains a left-hand side pattern (see 3.2) 
which is optionally followed by a let-before (see 3.6) and a guard (see 3.3). When a pattern matches and the optional 
guard evaluates to True the corresponding alternative is chosen. A new block structure (scope) is created for each case 
alternative (see 2.1). 
 
The variables defined in the patterns have the only a meaning in the corresponding alternative. 
 
case expression of 
 pattern1 -> case_alternative1 
 pattern2 -> case_alternative2 
 ... 
 patternn -> case_alternativen 
 
• All alternatives in the case expression must be of the same type. 
• When none of the patterns matches a run-time error is generated. 
 
The case expression. 
 
h x = case g x of 
  [hd:_] -> hd 
  []  -> abort "result of call g x in h is empty" 
 
is semantically equivalent to: 
 
h x = mycase (g x) 
where  
 mycase  [hd:_] = hd 
 mycase  []  = abort "result of call g x in h is empty" 


In a conditional expression first the Boolean expression is evaluated after which either the then- or the else-part is 
chosen. The conditional expression can be seen as a simple kind of case expression. 
• The then- and else-part in the conditional expression must be of the same type. 
• The discriminating expression must be of type Bool. 


3.4.11 Let Expression: Local Definitions for Expressions 


Sometimes it is convenient to introduce local function definitions (see 3.5.3) or constant (graph) definitions (see 3.5.4) 
which are only visible for a certain expression. So, a let expression is an expressions which introduces a new scope (see 
2.1). 
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The function and selectors defined in the let block only have a meaning within expression. 
 
let 
 function arguments = function_body 
 selector = expr 
 ... 
in expression 


Such local definitions can be introduced anywhere using a let expression with the following syntax. 
 
LetExpresssion = let { {LocalDef}+ } in GraphExpr 
LocalDef = GraphDef 
 | FunctionDef 
 
Example of a let expression used within a list comprehension. 
 
doublefibs n = [let a = fib i in (a, a) \\ i <- [0..n]] 


3.5 Local Definitions 


In a function definition one can locally define functions (see 3.5.3) and constant graphs (see 3.5.4). 
 
LocalDef = GraphDef 
 | FunctionDef 


Both kind of  local definitions can be introduced by using a let expression (see 3.4.11), by using a where block (see 
3.5.1) and by using a with block (see 3.5.2). Constant graph definitions can also be defined by using a strict let 
expression (see 3.6.1), and, in a let-before expression(see 3.6.2). 


3.5.1 Where Block: Local Definitions for a Function Alternative 


At the end of each function alternative one can locally define functions and constant graphs in a where block. 
 
LocalFunctionAltDefs = [where] { {LocalDef}+ } 


Functions and graphs defined in a where block can be used anywhere in the corresponding function alternative (i.e. in all 
guards and rule alternatives following a pattern, see 3.1) as indicated in the following picture showing the scope of a 
where block. 
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The function and selectors defined in the where block can be locally used in the whole function definition. 
 
function arguments  
  | pattern1  = function_alternative1 
  | pattern2  = function_alternative2 
  | otherwise = default_alternative 
  where 
   selector = expr 
   local_function args = function_body 
 
 
sieve and filter are local functions defined in a where block. They have only a meaning inside primes. At the global level 
the functions are unknown. 
 
primes::[Int] 
primes = sieve [2..] 
where 
 sieve::[Int] -> [Int]       // local function of primes 
 sieve [pr:r] = [pr:sieve (filter pr r)] 
 
 filter::Int [Int] -> [Int]      // local function of primes 
 filter pr [n:r] 
 | n mod pr == 0 = filter pr r 
 | otherwise  = [n:filter pr r] 


Notice that the scope rules are such that the arguments of the surrounding function alternative are visible to the locally 
defined functions and graphs. The arguments can therefore directly be addressed in the local definitions. Such local 
definitions cannot always be typed explicitly (see 4.3).  
 
Alternative definition of primes. The function filter is locally defined for sieve. filter can directly access argumet 
pr of sieve. 
 
primes::[Int] 
primes = sieve [2..] 
where 
 sieve::[Int] -> [Int]       // local function of primes 
 sieve [pr:r] = [pr:sieve (filter r)] 
 where 
  filter::[Int] -> [Int]      // local function of sieve 
  filter [n:r] 
  | n mod pr == 0 = filter r 
  | otherwise  = [n:filter r] 


3.5.2 With Block: Local Definitions for a Guarded Alternative 


One can also locally define functions and graphs at the end of each guarded rule alternative using a with block. 
 
LocalFunctionDefs = [with] { {LocalDef}+ } 
LocalDef = GraphDef 
 | FunctionDef 


Functions and graphs (see 3.5.4) defined in a with block can only be used in the corresponding rule alternative as 
indicated in the following picture showing the scope of a with block. 
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The function and selectors defined in the with block can be locally only be used in the corresponding function 
alternative. 
 
function arguments  
  | pattern1   =  function_alternative1 
      with 
      selector = expr 
      local_function args = function_body 
 
  | pattern2   =  function_alternative2 
      with 
      selector = expr 
      local_function args = function_body 
 


Notice that the scope rules are such that the arguments of the surrounding guarded rule alternative are visible to the 
locally defined functions and graphs. The arguments can therefore directly be addressed in the local definitions.  Such 
local definitions cannot always be typed explicitly (see 4.3).   


3.5.3 Defining Local Functions 


One can define functions which have a local scope, i.e. which have only a meaning in a certain program region (see 
3.4.11, 3.5.1, 3.5.3). Outside the scope the functions are unknown. This locality can be used to get a better program 
structure: functions which are only used in a certain program area can remain hidden outside that area. Programs can 
also become more readable because arguments of the surrounding function can directly be accessed in the local 
function body. Local functions therefore often need less arguments than functions defined on a global level (see 3.5.1). 
However, such local definitions cannot always be typed explicitly (see 4.3).   


3.5.4 Defining Local Constants 


One can give a name to a constant expression (actually a graph), such that the expression can be used in (and shared 
by) other expressions. One can also identify certain parts of a constant via a projection function called a selector (see 
below). Selectors are also used in list comprehensions and array comprehensions (see 3.4.5 and 3.4.8). 
 
GraphDef = Selector =[:] GraphExpr ; 
 
Graph locally defined in a function: the graph labelled last is shared in the function StripNewline and computed only 
once. 
 
StripNewline:: String -> String 
StripNewline "" = "" 
StripNewline string 
| string !! last<>'\n' = string 
| otherwise    = string%(0,last-1) 
where  
 last = maxindex string 


When a graph is defined actually a name is given to (part) of an expression. The definition of a graph can be compared 
with a definition of a constant (data) or a constant (projection) function. However, notice that graphs are constructed 
according to the basic semantics of CLEAN (see Chapter 1) which means that multiple references to the same graph will 
result in sharing of that graph. Recursive references will result in cyclic graph structures. Graphs have the property that 
they are computed only once and that their value is remembered within the scope they are defined in.  


Graph definitions differ from constant function definitions. A constant function definition is just a function defined with 
arity zero (see 3.1). A constant function defines an ordinary graph rewriting rule: multiple references to a function just 
means that the same definition is used such that a (constant) function will be recomputed again for each occurrence of 
the function symbol made. This difference can have consequences for the time and space behaviour of function 
definitions (see 5.2). 
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The Hamming numbers defined using a locally defined cyclic constant graph and defined by using a globally defined 
recursive constant function. The first definition (ham1) is efficient because already computed numbers are reused via 
sharing. The second definition (ham2 ) is much more inefficient because the recursive function recomputes everything. 
 
ham1:: [Int] 
ham1 = y  
where y = [1:merge (map ((*) 2) y) (merge (map ((*) 3) y) (map ((*) 5) y))]  
 
ham2:: [Int] 
ham2 = [1:merge (map ((*) 2) ham2) (merge (map ((*) 3) ham2) (map ((*) 5) ham2 ))]  


Syntactically the definition of a graph is distinguished from the definition of a function by the symbol which separates left-
hand side from right-hand side: "=:" is used for graphs while "=>" is used for functions. However, in general the more 
common symbol "=" is used for both type of definitions. Generally it is clear from the context what is meant (functions 
have parameters, selectors are also easy recognisible). However, when a simple constant is defined the syntax is 
ambiguous (it can be a constant function definition as well as a constant graph definition).  


To allow the use of the "=" whenever possible, the following rule is followed. Locally constant definitions are by default 
taken to be graph definitions and therefore shared, globally they are by default taken to be function definitions (see 3.1) 
and therefore recomputed. If one wants to obtain a different behaviour one has to explicit state the nature of the constant 
definition (has it to be shared or has it to be recomputed) by using "=:" (on the global level, meaning it is a constant 
graph which is shared) or "=>" (on the local level, meaning it is a constant function and has to be recomputed). 
 
Local constant graph versus local constant function definition: biglist1 and biglist2 is a graph which is computed 
only once, biglist3 is a constant function which is computed every time it is applied. 
 
biglist1 = [1..10000]      // a graph (if defined locally) 
biglist2 =: [1..10000]      // a graph 
biglist3 => [1..10000]      // a constant function 


Graphs defined locally will be collected by the garbage collector when they are no longer connected to the root of the 
program graph (see Chapter 1). 


 Selectors 


The left-hand side of a graph definition can be a simple name, but is can also be a more complicated pattern called a 
selector. A selector is a pattern which introduces one or more new selector variables implicitly defining projection 
functions to identify (parts of) a constant graph being defined  One can identify the sub-graph as a whole or one can 
identify its components. A selector can contain constants (also user defined constants introduced by algebraic type 
definitions), variables and wildcards. With a wildcard one can indicate that one is not interested in certain components. 
 
Selector = BrackPattern    // for bracket patterns see 3.2 


• When a selector on the left-hand side of a graph definition is not matching the graph on the right-hand side it will 
result in a run-time error. 


• The selector variables introduced in the selector must be different from each other and not already be used in the 
same scope and name space (see 1.2). 


• To avoid the specification of patterns which may fail at run-time, it is not allowed to test on zero arity constructors. 
For instance, list used in a selector pattern need to be of form [a:_]. [a] cannot be used because it stands for 
[a:[]] implying a test on the zero arity constructor []. If the pattern is a record only those fields which contents 
one is interested in need to be in dicated in the pattern  


• Arrays cannot be used as pattern in a selector.  


Remark: a selector can also appear on the left-hand side of a generator in a list comprehension (see 3.4.5) or array 
comprehension (see 3.4.8).  
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Use of a selectors to locally select tuple elements. 
 
unzip::[(a,b)] -> ([a],[b]) 
unzip []   = ([],[]) 
unzip [(x,y):xys] = ([x:xs],[y:ys]) 
where 
 (xs,ys) = unzip xys 


3.6 Special Local Definitions 


In addition to ordinary let expressions there are also special let expressions with which one can locally define graphs 
(see 3.5.4), but not functions (!). These special let expressions are introduced for very specific reasons.  


3.6.1 Strict Let Expression: Strict Local Constants  


Although CLEAN is by default a lazy language one can force evaluation in several ways. By forcing evaluation one 
generally obtains a more time- and space-efficient program (see 5.1). Forcing evaluation can influence the termination 
behaviour of the program (a terminating program may be turned into a non-terminating program). See also Section 5.1. 


The nicest way to force evaluation is by defining (partially) strict data structures. But it can also be handy to force 
evaluation on ad-hoc basis. This can be done by annotating function arguments as being strict (see 5.1.2). Another way 
to force evaluation is by using a strict let expression. The strict let expression looks similar to an ordinary let expression 
albeit that only graphs can be defined in a strict let expression which will be evaluated to strong root normal form before 
the root expression is being evaluated (see 3.5). To ensure that evaluation indeed takes place, a strict let expression can 
only be used before the root expression (which will be evaluated) and it can only contain graph definitions (which can be 
evaluated). The order in which the graphs in the let expression will be evaluated is undefined. The scope introduced by a 
strict let expression is the same as with an ordinary let expression. 


Strict let expressions can be used to force unique objects in a strict context such that they can be observed before they 
are destructively updated.  
 
StrictLet = let! { {GraphDef}+ } in 
 
Let! expression forcing evaluation. 
 
SquareArrayElem:: *{Int} Int ->.{Int} 
SquareArrayElem a i = let! e = a.[i] 
     in {a & [i]=e*e} 


3.6.2 Let-Before Expression: Local Constants for a Guard 


Many of the functions for input and output in the CLEAN I/O library are state transition functions. Such a state is often 
passed from one function to another in a single threaded way (see Chapter 4) to force a specific order of evaluation. This 
is certainly the case when the state is of unique type. The threading parameter has to be renamed to distinghuish its 
different versions. The following example shows a typical example: 
 
Use of state transition functions. The uniquely typed state file is passed from one function to another involving a number 
of renamings: file, file1, file2) 
 
readchars:: *File -> ([Char], *File) 
readchars file  
| not ok  = ([],file1) 
| otherwise = ([char:chars], file2) 
where 
 (ok,char,file1) = freadc file 
 (chars,file2)  = readchars file1 


This explicit renaming of threaded parameters not only looks very ugly, these kind of definitions are sometimes also hard 
to read as well (in which order do things happen? which state is passed in which situation?). We have to admit: an 
imperative style of programming is much more easier to read when things have to happen in a certain order such as is 
the case when doing I/O. That is why we have introduced let-before expressions. 
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Let-before expressions are special let expressions which can be defined before a guard or function body. In this way one 
can specify sequential actions in the order in which they suppose to happen. Let-before expressions have the following 
syntax: 
 
LetBeforeExpression = Lets {GraphDef}+ 
Lets = let | # | let! | #! 


The form with the exclamation mark forces the evaluation of the node-ids that appear in the left-hand sides of the 
definitions (see strict let-expressions, Section 3.6.1). Instead of the keyword let the #-symbol is often used because it 
looks nice in combination with the |-symbol used for guards. 


Let-before expressions have a special scope rule to obtain an imperative programming look. The variables in the left-
hand side of these definitions do not appear in the scope of the right-hand side of that definition, but they do appear in 
the scope of the other definitions that follow (including the root expression, excluding local definitions in where blocks.  
 
This is shown in the following picture: 
 
Function args 
  # selector1 = expression1 
  | guard1  = expression2 
  # selector2 = expression3 
  | guard2  = expression4 
  where 
   local_definitions 


Note that the scope of variables in the let before expressions does not extent to the definitions in the where expression of 
the alternative. The reverse is true however: definitions in the where expression can be used in the let before 
expressions. 
 
Use of let before expressions, short notation, re-using names taking use of the special scope of the let before) 
 
readchars:: *File -> ([Char], *File) 
readchars file 
# (ok,char,file) = freadc file 
| not ok   = ([],file) 
# (chars,file)  = readchars file 
= ([char:chars], file) 
 
Equivalent definition renaming threaded parameters) 
 
readchars:: *File -> ([Char], *File) 
readchars file 
# (ok,char,file1) = freadc file 
| not ok   = ([],file1) 
# (chars, file2) = readchars file1 
= ([char:chars], file2) 
 
Equivalent definition, using keyword let instead of # ) 
 
readchars:: *File -> ([Char], *File) 
readchars file 
let (ok,char,file) = freadc file 
| not ok   = ([],file) 
let (chars,file)  = readchars file 
= ([char:chars], file) 


The notation can also be dangerous: the same name is used on different spots while the meaning of the name is not 
always the same (one has to take the scope into account which changes from definition to definition). However, the 
notation is rather safe when it is used to thread parameters of unique type. The type system will spot it when such 
parameters are not used in a correct single threaded manner. We do not recommend the use of let before expressions to 
adopt a imperative programming style for other cases.  
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Abuse of let before expression. 
 
exchange:: (a, b) -> (b, a) 
exchange (x, y) 
# temp = x 
 x = y 
 y = temp 
= (x, y) 
 











 


 


 


  Chapter 4 


 Defining Types 
4.1 Predefined Types 


4.2 Defining New Types 


4.3 Typing Functions  


4.4 Typing Overloaded Functions 


4.5 Defining Uniqueness Types 


 


CLEAN is a strongly typed language. The basic type system of CLEAN is based on the classical polymorphic Mil-
ner/Hindley/Mycroft (Milner  1978; Hindley  1969, Mycroft, 1984) type system. This type system is adapted for graph 
rewriting systems and extended with basic types, (possibly existentially quantified) algebraic types, record types, ab-
stract types and synonym types. These types are explained in the Sections 4.1, 4.2 and 4.3.  


In CLEAN each classical type is furthermore extended with uniqueness type attributes. This very special and important 
extension is explained in Section 4.5. 


CLEAN allows functions and operators to be overloaded. Type classes and type constructor classes are provided (which 
look similar to Haskell (Hudak et al. , 1992) and Gofer (Jones, 1993) although they have slightly different semantics) with 
which a restricted context can be imposed on a type variable in a type specification. This is explained in Section 4.4. 


Although CLEAN is purely functional, operations with side-effects (I/O operations, for instance) are permitted. To achieve 
this without violating the semantics, the classical types are supplied with so called uniqueness attributes. This is 
explained in Section 4.5. 


4.1 Predefined Types 


CLEAN is a strongly typed language : every object (graph) and function (graph rewrite rule) in CLEAN has a type. The 
types of functions can be explicitly specified by the programmer or they can be inferred automatically (see 4.3) Types 
can be formed by taking instances of type constructors which have been defined explicitly as algebraic type (see 4.2.1), 
record type (see 4.2.2), synonym type (see 4.2.3), abstract type (see 4.2.4) or by taken instances of a predefined type 
(see 4.1.1 - 4.1.6). A type instance  from a given type is obtained by uniformly substituting a type for a type variable. A 
type instance can be preceded by a uniqueness type attribute . This is further explained in Section 4.5.1. 
 
Type = {BrackType}+ 
BrackType = [UnqTypeAttrib] SimpleType 
SimpleType = TypeConstructor       // see 4.2, 4.4 
 | TypeVariable 
 | BasicType        // see 4.1.1 
 | PredefAbstrType       // see 4.1.2 
 | ListType         // see 4.1.3 
 | TupleType        // see 4.1.4 
 | ArrayType        // see 4.1.5 
 | ArrowType        // see 4.1.6 
 | (Type) 


4.1.1 Basic Types 


Basic types are algebraic types (see 4.2) which are predefined for reasons of efficiency and convenience: Int  (for 32 
bits integer values), Real  (for 64 bit double precision floating point values), Char  (for 8 bits ASCII  character values) 
and Bool  (for 8 bits Boolean values). For programming convenience special syntax is introduced to denote constant 
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values (data constructors) of these predefined types (see 3.2). Functions to create and manipulate objects of basic types 
can be found in the CLEAN library (as indicated below). 
 
BasicType = Int           // see StdInt.dcl 
 | Real          // see StdReal.dcl 
 | Char          // see StdChar.dcl 
 | Bool          // see StdBool.dcl 


4.1.2 Predefined Abstract Types 


As is explained in Section 4.2.4, Abstract data types are types of which the actual definition is hidden. In CLEAN the 
types World , File  and ProcId  are predefined abstract data types. They are recognised by the compiler and 
treated specially, either for efficiency or because they play a special role in the language. Since the actual definition is 
hidden it is not possible to denotate constant values of these predefined abstract types. There are functions predefined 
in the CLEAN library for the creation and manipulation of these predefined abstract data types. Some functions work 
(only) on unique objects (see Chapter 4). 


An object of type *World  (* indicates that the world is unique, see 4.5.1) is automatically created when a program is 
started. This object is optionally given as argument to the Start function (see 2.3). With this object efficient interfacing 
with the outside world (which is indeed unique) is made possible (see Chapter 4). 


An object of type File  or *File can be created by means of the functions defined in StdFileIO (see CLEANs 
Standard Library). It makes direct manipulation of persistent data possible. The type File is predefined for reasons of 
efficiency: CLEAN Files are directly coupled to concrete files. 


An object of type ProcId  can be created by means of the functions defined in StdProcId (see CLEANs Standard 
Library). These objects are used in process annotations to allow process creation on an indicated processor (see 
Chapter 5) in a network topology. 
 
PredefAbstrType = World         // see StdWorld.dcl 
 | File         // see StdFileIO.dcl 
 | ProcId         // see StdProcId.dcl 


4.1.3 List Types 


A list  is an algebraic data type predefined just for programming convenience. A list can contain an infinite number of 
elements. All elements must be of the same type. Lists are very often used in functional languages and therefore the 
usual syntactic sugar is provided for the creation and manipulation of lists (dot-dot expressions, list comprehensions) 
while there is also special syntax for list of characters. (see 3.4.5 and 3.2.5) 


• Lists cannot be annotated as strict or spine strict. To create such lists a new algebraic data type has to be defined 
with appropriate strictness annotations (see 5.1.3). We are working on removing this restriction. 


 
ListType = [Type] 


4.1.4 Tuple Types 


A tuple  is an algebraic data type predefined for reasons of programming convenience and efficiency (see 5.1). Tuples 
have as advantage that they allow to bundle a finite number of objects of arbitrary type into a new object without being 
forced to define a new algebraic type for such a new object (see 3.4.6 and 3.2.6). This is in particular handy for functions 
that return several values. 


The tuple arguments can optionally be annotated as being strict (see 5.1.1). This can be used to increase the efficiency 
of a program (see 5.1). The compiler will automatically take care of the conversion between lazy and strict tuples where 
needed (see 5.1.4). 
 
TupleType  = ([Strict] Type,{[Strict] Type}-list) 
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4.1.5 Array Types 


An array  is an algebraic data type predefined for reasons of efficiency. Arrays contain a finite number of elements that 
all have to be of the same type. An array has as property that its elements can be accessed via indexing in constant 
time. An array index  must be an integer value between 0 and the number of elements of the array-1. Destructive 
updates of array elements is possible thanks to uniqueness typing. For programming convenience special syntax is 
provided for the creation, selection and updating of array elements (array comprehensions) while there is also special 
syntax for strings (i.e. unboxed arrays of characters) (see 3.4.8 and 3.2.8). Arrays have as disadvantage that their use 
increases the possibility of a run-time error (indices that might get out-of-range).  


To obtain optimal efficiency in time and space, arrays are implemented different depending on the concrete type of the 
array elements. By default an array is implemented as a lazy array (type {a}), i.e. an array consists of a contiguous 
block of memory containing pointers to the array elements. The same representation is chosen if strict arrays (define its 
type as {!a}) are being used. For elements of basic type an unboxed array (define its type as {#a}) can be used. In 
that latter case the pointers are replaced by the array elements themselves. Lazy, strict and unboxed arrays are 
regarded by the CLEAN compiler as objects of different types. However, most predefined operations on arrays are 
overloaded such that they can be used on lazy, on strict as well as on unboxed arrays. 
 
ArrayType = {[Strict] Type} 
 | {#BasicType} 


4.1.6 Arrow Types 


The arrow type  is used for function object s (these functions have at least arity one) One can use the Cartesian product 
(uncurried version) to denote the function type (see 4.3) to obtain a compact notation. Curried functions applications and 
types are automatically converted to their uncurried equivalent versions (see 4.3.1)  
 
ArrowType = ({BrackType}+ -> Type) 
 
Example of an arrow type. 
 
((a b -> c) [a] [b] -> [c]) 
 
being equivalent with: 
 
((a -> b -> c) -> [a] -> [b] -> [c]) 


4.2 Defining New Types 


New types can be defined in an implementation as well as in a definition module. Types can only be defined on the 
global level. Abstract types can only be defined in a definition module hiding the actual implementation in the 
corresponding implementation module (see 4.2.4 and Chapter 2).  
 
TypeDef  = AlgebraicTypeDef       // see 4.2.1 and 4.5.2 
 | RecordTypeDef       // see 4.2.1 and 4.5.2 
 | SynonymTypeDef       // see 4.2.3 and 4.5.2 
 | AbstractTypeDef       // see 4.2.4 and 4.5.2 
FunctionDef = [FunctionTypeDef] DefOfFunction   // see 4.3 and 4.5.3 
ClassDef = TypeClassDef       // see 4.4 and 4.5.4 
 | TypeInstanceDef       // see 4.4 and 4.5.4 
 | TypeClassInstanceExportDef    // see 4.4  


4.2.1 Defining Algebraic Data Types 


With an algebraic data type  one assigns a new type constructor (a new type) to a newly introduced data structure . The 
data structure consists of a new constant value  (called the data constructor ) which can have zero or more arguments 
(of any type). Every data constructor must unambiguously have been (pre)defined in an algebraic data type definition  
Several data constructors can be introduced in one algebraic data type definition which makes it possible to define alter-
native data structures of the same algebraic data type. The data constructors can, just like functions, be used in a curried 
way. Also type constructors can be used in a curried way, albeit only in the type world of course. 
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Polymorphic algebraic data types can be defined by adding (possibly existentially quantified, see below) type variable s 
to the type constructors on the left-hand side of the algebraic data type definition  The arguments of the data constructor 
in a type definition are type instances of types (that are defined or are being defined). 


Types can be preceded by uniqueness type attributes (see 4.5.2). The arguments of a defined data constructor can 
optionally be annotated as being strict (see 5.1). 
 
AlgebraicTypeDef = ::TypeLhs = [QuantifiedVariables :] ConstructorDef {|ConstructorDef} ; 
 
TypeLhs = [*]TypeConstructor {[*] TypeVariable}  
TypeConstructor  = TypeName 
 
ConstructorDef = ConstructorName {[Strict] BrackType} 
 | (ConstructorName) [Fix][Prec] {[Strict] BrackType} 
QuantifiedVariables = {E. TypeVariable}+ 
Fix = infixl 
 | infixr 
 | infix 
Prec = Digit 
 
Example of an algebraic type definition and its use. 
 
::Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun 
 
::Tree a = NilTree 
  | NodeTree a (Tree a) (Tree a) 
 
MyTree:: (Tree Int)     // constant function yielding a Tree of Int 
MyTree = NodeTree 1 NilTree NilTree  


An algebraic data type definition can be seen as the specification of a grammar in which is specified what legal data 
objects are of that specific type. All data constructors being defined must therefore have different names, to make type 
inferencing possible. Notice that the other CLEAN types (basic, list, tuple, array, record, abstract types) can be regarded 
as special cases of an algebraic type. 
 
Scope of type definitions. 
 
implementation module XYZ 
 
:: Type_contructor type_vars = expression 
 
other_definitions 
 


 Defining Infix Data Constructors 


Constructors with two arguments can be defined as infix constructor  , in a similar way as function operators (with fixity 
(infixl , infixr .i  or just infix , default infixl) and precedence (0 through 9, default 9). Infix constructors 
can also be used in prefix position when they are surrounded by brackets (see 3.1).  
 
Example of an algebraic type defining an infix data constructor, a function on this type; notice that one cannot use a ':' 
because this character is already reserved. 
 
::List a = (<:>) infixr 5 a (List a) 
  | Nil 
 
Head:: (List a) -> a 
Head (x<:>xs) = x 


 Using Higher Order Types 


In an algebraic type definition ordinary types can be used (such as a basic type, e.g. Int, or a list type, e.g. [Int], or 
an instantiation of a user defined type, e.g. Tree Int), but one can also use higher order types. Higher order types can 
be constructed by curried applications of the type constructors. Higher order types can be applied in the type world in a 
similar way as higher order functions in the function world. The use of higher order types increases the flexibility with 
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which algebraic types can be defined. Higher order types play an important role in combination with type classes (see 
4.4). 
 
Type = {BrackType}+ 
BrackType = [UnqTypeAttrib] SimpleType 
SimpleType = TypeConstructor 
 | TypeVariable 
 | BasicType 
 | PredefAbstrType 
 | ListType 
 | TupleType 
 | ArrayType 
 | ArrowType 
 | (Type) 
TypeConstructor = TypeName        // a user defined type 
 | []          // list type constructorype 
 | ({,}+)         // tuple type constructor (arity >= 2) 
 | {}          // lazy array type constructor 
 | {!}          // strict array type constructor 
 | {#}          // unboxed array type constructor 
 | (->)         // arrow type constructor 


Predefined types can also be used in curried way. To make this possible all predefined types can be written down in 
prefix notation as well, as follows: 
  
[] a   is equivalent with [a] 
(,) a b  is equivalent with (a,b) 
(,,) a b c is equivalent with (a,b,c) and so on for n-tuples  
{} a   is equivalent with {a} 
{!} a  is equivalent with {!a} 
{#} a  is equivalent with {#a} 
(->) a b  is equivalent with (a -> b) 


Of course, one needs to ensure that all types are applied in a correct way. To be able to specify the rules that indicate 
whether a type itself is correct, we introduce the notion of kind. A kind can be seen as the `type of a type`. In our case, 
the kind of a type expresses the number of type arguments this type may have. The kind X stands for any so-called first-
order type: a type expecting no forther arguments ((Int, Bool, [Int], etcetera). The kind X -> X stands for a type that 
can be be applied to a (first-order) type, which then yields another first-order type, x -> x -> x expecting two type 
arguments of, and so on. 
  
Int, Bool, [Int], Tree [Int] :: X 
[], Tree, (,) Int, (->) a, {} :: X -> X 
(,), (->)     :: X -> X -> X 
(,,)       :: X -> X -> X -> X 


In CLEAN each top level type should have kind X. A top level type is a type that occurs either as an argument or result 
type of a function or as argument type of a data constructor (in some algebraic type definition). The rule for determining 
the kinds of the type variables (which can be of any order) are fairly simple: The kind of a type variable directly follows 
from its use. If a variable has no arguments, its kind is X. Otherwise, its kind corresponds to the number of arguments to 
whch the variable is applied. The kind of type variable determines its possible instantiations, i.e. it can only be 
instantiated with a type which is of the same kind as the type variable itself. 
 
Example of an algebraic type using higher order types; the type variable t in the definition of Tree2 s of kind X -> X. 
Tree2 is instantiated with a list (also of kind X -> X) in the definition of MyTree2. 
 
::Tree2 t = NilTree 
   | NodeTree (t Int) (Tree2 t) (Tree2 t) 
 
MyTree2:: Tree2 [] 
MyTree2 = NodeTree [1,2,3] NilTree NilTree  


 Defining Algebraic Data Types with Existentially Quantified Variables 


An algebraic type definition can contain existentially quantified type variable s (or, for short, existential type variables) 
(Läufer  1992)  These special variables are indicated by preceding them with "E. ". Existential types are useful if one 
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wants to create (recursive) data structures in which objects of different types are being stored (e.g. a list with elements of 
different types). 
 
Example of an existential type definitions and theis use. In this example a list-like structure is defined in which functions 
can be stored. The functions in this structure can be applied one after another in a pipe-line fashion. Each function in the 
pipeline can yield a result of arbitrary type which is exactly of the type required by the next function in the pipe-line. The 
first function in the pipeline expects type a, the last will yield type b. Hence, the function composed in this way is a 
function of type a -> b. The recursive function ApplyPipe happens to be an example of a recursive function which 
type cannot be inferred (with the Milner type system), however its specified type can be checked (with the Mycroft type 
system. 
 
::Pipe a b = Direct (a -> b) 
   | E.via: Indirect (a -> via) (Pipe via b) 
 
ApplyPipe:: (Pipe a b) a -> b 
ApplyPipe (Direct func) val   = func val 
ApplyPipe (Indirect func pipes) val = ApplyPipe pipes (func val) 
 
Start = ApplyPipe (Indirect toReal (Indirect exp (Direct toInt))) 3 


To ensure correctness of typing, there is a limitation imposed on the use of existentially quantified data structures   
• Once a data structure containing existentially quantified parts is created the type of these components are 


forgotten. This means that, in general, if such a data structured is passed to another function it is statically 
impossible to determine the actual types of those components: it can be of any type. Therefore, a function having 
an existentially quantified data structure as input is not allowed to make specific type assumptions on the parts that 
correspond to the existential type variables. This implies that one can only instantiate an existential type variable 
with a concrete type when the object is created. 


 
Counter Example. Illegal use of an object with existentially quantified components; the concrete type of the components 
of the Pipe are unknown. 
 
ApplFunc:: (Pipe Int b) -> ??  
ApplFunc (Indirect func pipes) = func 3 


 Semantic Restrictions on Algebraic Data Types 


Other semantic restrictions on algebraic data types: 
• The name of a type must be different from other names in the same scope and name space (see 2.1). 
• All type variables on the left-hand side must be different. 
• All type variables used on the right-hand side are bound, i.e. must be introduced on the left-hand side of the 


algebraic type being defined. 
• A data constructor can only be defined once within the same scope and name space. So, each data constructor 


unambiguously identifies its type to make type inferrencing possible. 
• When a data constructor is used in infix position both arguments have to be present. Data constructors can be 


used in a curried way in the function world, but then they have to be used as ordinary prefix constructors. 
• Type constructors can be used in a curried way in the type world; to use predefined bracket-like type constructors 


(for lists, tuples, arrays) in a curried way they must be used in prefix notation. 
• The right-hand side of an algebraic data type definition should yield a type of kind X, all arguments of the data 


constructor being defined should be of kind X as well. 
• A type can only be instantiated with a type that is of the same kind.  
• An existentially quantified type variable specified in an algebraic type can only be instantiated with a concrete type 


(= not a type variable) when a data structure of this type is created. 


4.2.2 Defining Record Types 


A record type  is basically an algebraic data type in which exactly one constructor is defined. Special about records is 
- that a field name  is attached to each of the arguments of the data constructor; 
• that records cannot be used in a curried way. 


Compared with ordinary algebraic data structures the use of records gives a lot of notational convenience because the 
field names enable selection by field name instead of selection by position  When a record is created all arguments of 
the constructor have to be defined but one can specify the arguments in any order (see 3.4.7). Furthermore, when 
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pattern matching is performed on a record, one only has to mention those fields one is interested in (see 3.2.6). A record 
can be created via a functional update (see 3.4.7). In that case one only has to specify the values for those fields which 
differ from the old record. Matching and creation of records can hence be specified in CLEAN in such a way that after a 
change in the structure of a record only those functions have to be changed which are explicitly referring to the changed 
fields.  


Existential type variables (see 4.2.1) are allowed in record types (as in any other type). The arguments of the constructor 
can optionally be annotated as being strict (see 5.1). The optional uniqueness attributes are treated in 4.5.2. 
 
RecordTypeDef = ::TypeLhs =  [QuantifiedVariables :] {{FieldName :: [Strict] Type}-list}; 


As data constructor for a record the name of the record type is used internally. 
• The semantic restrictions which apply for algebraic data types also hold for record types. 
• The field names inside one record all have to be different. It is allowed to use the same field name in different 


records. 
 
Example of an record definition. 
 
::Complex = { re :: Real 
    , im :: Real 
    } 


The combination of existential type variables in record types are of use for an object oriented style of programming  
 
Example of using an existentially quantified records to create object of same type but which can have different 
representations. 
 
::Object = E.x: { state :: x 
    , get :: x -> Int 
    , set :: x Int -> x 
    } 
 
CreateObject1:: Object 
CreateObject1 = {state = [], get = myget, set = myset} 
where 
 myget:: [Int] -> Int 
 myget [i:is] = i 
 myget []  = 0 
  
 myset:: [Int] Int -> [Int] 
 myset is i = [i:is] 
 
CreateObject2 = {state = 0.0, get = myget, set = myset} 
where 
 myget:: Real -> Int 
 myget r = toInt r 
  
 myset:: Real Int -> Real 
 myset r i = r + toReal i  
 
Get:: Object -> Int 
Get {state,get} = get state 
 
Set:: Object Int -> Object 
Set o=:{state,set} i = {o & state = set state i} 
 
Start:: [Object] 
Start = map (Set 3) [CreateObject1,CreateObject2] 


4.2.3 Defining Synonym Types 


Synonym types permit the programmer to introduce new type names for an existing type. 
 
SynonymTypeDef = ::TypeLhs :== [QuantifiedVariables :]Type ; 


• For the left-hand side the same restrictions hold as for algebraic types (see 4.2.1). 
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• Cyclic definitions of synonym types (e.g. ::T a b :== G a b; ::G a b :== T a b) are not allowed. 
 
Example of a type synonym definition. 
 
::Operator a :== a a -> a 
 
map2:: (Operator a) [a] [a] -> [a] 
map2 op [] []   = [] 
map2 op [f1:r1] [f2:r2] = [op f1 f2 :map2 op r1 r2] 
 
Start:: Int 
Start = map2 (*) [2,3,4,5] [7,8,9,10] 


4.2.4 Defining Abstract Data Types 


A type can be exported by defining the type in a CLEAN definition module (see Chapter 2). For software engineering 
reasons it sometimes better only to export the name of a type but not its concrete definition (the right-hand side of the 
type definition). The type then becomes an abstract data type. In CLEAN this is done by specifying only the left-hand-side 
of a type in the definition module while the concrete definition (the right-hand side of the type definition) is hidden in the 
implementation module. So, CLEAN's module structure is used to hide the actual implementation. When one wants to do 
something useful with objects of abstract types one needs to export functions that can create and manipulate objects of 
this type as well. 
• Abstract data type definitions are only allowed in definition module s, the concrete definition has to be given in the 


corresponding implementation module  . 
• The left-hand side of the concrete type should be identical to (modulo alpha conversion for variable names) the left-


hand side of the abstract type definition (inclusive strictness and uniqueness type attributes). 
 
AbstractTypeDef = ::TypeLhs ; 
 
Example of an abstract data type. 
 
definition module stack 
 
::Stack a 
 
Empty ::   (Stack a) 
isEmpty ::   (Stack a) -> Bool 
Top  ::   (Stack a) -> a 
Push  :: a (Stack a) -> Stack a 
Pop  ::   (Stack a) -> Stack a 
 
implementation module stack 
 
::Stack a :== [a] 
 
Empty:: (Stack a) 
Empty = [] 
 
isEmpty:: (Stack a) -> Bool 
isEmpty [] = True 
isEmpty s  = False 
 
Top:: (Stack a) -> a 
Top [e:s] = e 
 
Push:: a (Stack a) -> Stack a 
Push e s = [e:s] 
 
Pop:: (Stack a) -> Stack a 
Pop [e:s] = s 
 


4.3 Typing Functions 


Although one is in general not obligated to explicitly specify the type of a function (the CLEAN compiler can infer the type) 
the explicit specification of the type is highly recommended to increase the readability of the program. 
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FunctionDef  = [FunctionTypeDef] DefOfFunction 
 
FunctionTypeDef = FunctionName :: FunctionType ; 
 | (FunctionName) [Fix][Prec] [:: FunctionType] ; 
Fix  = infixl 
 | infixr 
 | infix 
Prec  = Digit 
FunctionType = [{[Strict] BrackType}+ ->] Type [ClassContext] [UnqTypeUnEqualities] 


An explicit specification is required when a function is exported, or when the programmer wants to impose additional 
restrictions on the application of the function (e.g. a more restricted type can be specified, strictness information can be 
added as explained in Section 5.1, a class context for the type variables can be defined as explained in Section 4.4, 
uniqueness information can be added as explained in Section 4.5.3). The CLEAN type system uses a combination of 
Milner/Mycroft type assignment. This has as consequence that the type system in some rare cases is not capable to infer 
the type of a function (using the Milner/Hindley system) although it will approve a given type (using the Mycroft system; 
see Plasmeijer and Van Eekelen, 1993; see also the example in 4.2.1). 


The Cartesian product is used for the specification of the function type. Cartesian product is denoted by juxtaposition of 
the bracketed argument types. For the case of a single argument the brackets can be left out. In type specifications the 
binding priority of the application of type constructors is higher than the binding of the arrow ->. To indicate that one 
defines an operator the function name is on the left-hand side surrounded by brackets.  
• The function symbol before the double colon should be the same as the function symbol of the corresponding 


rewrite rule. 
• The arity of the functions has to correspond with the number of arguments of which the Cartesian product is taken. 


So, in CLEAN one can tell the arity of the function by its type. 
 
Showing how the arity of a function is reflected in type. 
 
map:: (a->b) [a] -> [b]        // map has arity 2 
map f []  = [] 
map f [x:xs] = [f x : map f xs] 
 
domap:: ((a->b) [a] -> [b])       // domap has arity zero 
domap = map 
 
• The arguments and the result types of a function should be of kind X. 
• In the specification of a type of a locally defined function one cannot refer to a type variable introduced in the type 


specification of a surrounding function (there is not yet a scope rule on types defined). The type of such a local 
function can therefore not yet be specified by the programmer. However, the type will be inferred and checked 
(after it is lifted by the compiler to the global level) by the type system. 


 
Counter example (illegal type specification). The function g returns a tuple. The type of the first tuple element is the same 
as the type of the polymorphic argument of f. Such a dependency (here indicated by "^" cannot be specified yet. 
 
f:: a -> (a,a) 
f x = g x 
where 
 // g:: b -> (^a,b) 
 g y = (x,y) 


4.3.1 Typing Curried Functions 


In CLEAN all symbols (functions and constructors) are defined with fixed arity. However, in a application it is of course al-
lowed to apply them to an arbitrary number of arguments. A curried application  of a function is an application of a 
function with a number of arguments which is less than its arity (note that in CLEAN the arity of a function can be derived 
from its type)  With the aid of the predefined internal function _AP a curried function applied on the required number of 
arguments is transformed into an equivalent uncurried function application. 


The type axiom's of the CLEAN type system include for all s defined with arity n the equivalence of s::(t1->(t2-
>(…(tn->tr)…)) with s::t1 t2 … tn -> tr. 
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4.3.2 Typing Operators 


An operator  is a function with arity two that can be used in infix position. An operator can be defined by enclosing the 
operator name between parentheses in the left-hand-side of the function definition. An operator has a precedence  (0 
through 9, default 9) and a fixity  (infixl .ib , infixr .ib  or just infix .ib .infix;, default infixl). A 
higher precedence binds more tightly. When operators have equal precedence, the fixity determines the priority. In an 
expression an ordinary function application always has the highest priority (10). See also Section 2.3 and 3.1. 
• The type of an operator must obey the requirements as defined for typing functions with arity two. 
• If the operator is explicitly typed the operator name should also be put between parentheses in the type rule. 
• When an infix operator is enclosed between parentheses it can be applied as a prefix function. Possible recursive 


definitions of the newly defined operator on the right-hand-side also follow this convention. 
 
Example of an operator definition and its type. 
 
(o) infix 8:: (x -> y) (z -> x) -> (z -> y)    // function composition 
(o) f g = \x -> f (g x) 


4.3.3 Typing Partial Functions 


Patterns and guards imply a condition that has to be fulfilled before a rewrite rule can be applied (see 3.2 and 3.3). This 
makes it possible to define partial function s, functions which are not defined for all possible values of the specified type. 
• When a partial function is applied to a value outside the domain for which the function is defined it will result into a 


run-time error. 


The compiler gives a warning when functions are defined which might be partial. 


With the abort expression (see StdMisc.dcl) one can change any partial function into a total function  (the abort  
expression can have any type). The abort expression can be used to give a user-defined run-time error message 
 
Use of abort to make a function total. 
 
fac:: Int -> Int 
fac 0    = 1 
fac n 
 | n>=1   = n * fac (n - 1) 
 | otherwise  = abort "fac called with a negative number" 


4.4 Typing Overloaded Functions 


The names of the functions one defines generally all have to be different within the same scope and name space (see 
2.1). However, it is sometimes very convenient to overload certain functions and operators (e.g. +, -, ==), i.e. use identi-
cal names for different functions or operators that perform similar tasks albeit on objects of different types.  


In principle it is possible to simulate a kind of overloading by using records. One simply defines a record (see 4.2.2) in 
which a collection of functions are stored that somehow belong to each other. Now the field name of the record can be 
used as (overloaded) synonym for any concrete function stored on the corresponding position. The record can be re-
garded as a kind of dictionary  in which the concrete function can be looked up.  
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Example of the use of a dictionary record to simulate overloading/type classes). sumlist can use the field name add as 
synonym for any concrete function obeying the type as specified in the record definition. The operators +., +^, -. and -
^ are assumed to be predefined primitives operators for addition and subtraction on the basic types Real and Int. 
 
::Arith a = { add  :: a a -> a  
   , subtract :: a a -> a 
   } 
 
ArithReal = { add = (+.), subtract = (-.) } 
ArithInt  = { add = (+^), subtract = (-^) } 
 
sumlist:: (Arith a) [a] [a] -> [a] 
sumlist arith [x:xs] [y:ys] = [arith.add x y:sumlist arith xs ys] 
sumlist arith x y    = [] 
 
Start = sumlist ArithInt [1..10] [11..20] 


A disadvantage of such a dictionary record is that it is syntactically not so nice (e.g. one explicitly has to pass the record 
to the appropriate function) and that one has to pay a huge price for efficiency (due to the use of higher order functions) 
as well. CLEAN's overloading system as introduced below enables the CLEAN system to automatically create and add 
dictionaries as argument to the appropriate function definitions and function applications. To avoid efficiency loss the 
CLEAN compiler will substitute the intended concrete function for the overloaded function application where possible. In 
worst case however CLEAN's overloading system will indeed have to generate a dictionary record which is then 
automatically passed as additional parameter to the appropriate function. 


4.4.1 Type Classes 


In a type class  definition one gives a name to a set of overloaded functions (this is similar to the definition of a type of 
the dictionary record as explained above). For each overloaded  function or operator which is a member of the class the 
overloaded name and its overloaded type is specified. A special overloaded type class variable indicates how the 
different instantiations of the class can vary from each other. 
 
TypeClassDef = class  ClassName TypeVariable [ClassContext] 
  [[where] { {ClassMemberDef}+ }] 
 | class FunctionName TypeVariable :: FunctionType; 
 | class (FunctionName) [Fix][Prec] TypeVariable :: FunctionType; 
 
ClassMemberDef = FunctionTypeDef 
  [MacroDef] 
 
Example of the definition of a type class; in this case the class named Arith contains two overloaded operators. 
 
class Arith a 
where 
 (+) infixl 6:: a a -> a 
 (-) infixl 6:: a a -> a 


With an instance   declaration an instance of a given class can be defined (this is similar to the creation of a dictionary 
record). When the instance is made it has to be specified for which concrete type an instance is created. For each 
overloaded function in the class a concrete function or operator has to be defined. The type of a concrete function must 
exactly match the corresponding overloaded type after uniform substitution of the concrete type for the overloaded 
function type in the type class definition. 
 
TypeClassInstanceDef = instance ClassName [BrackType [default] [ClassContext]] 
  [[where] {{DefOfFunction}+ }] 
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Example of the definition of an instance of a type class Arith for type Int). Notice that the type of the concrete 
functions can be deduced by substituting the concrete type for the overloaded type variable in the corresponding class 
definition. One is not obliged to repeat the type of the concrete functions instantiated (nor the fixity or associativity in the 
case of operators. 
 
instance Arith Int 
where 
 (+):: Int Int -> Int 
 (+) x y = x +^ y 
 
 (-):: Int Int -> Int 
 (-) x y = x -^ y 
 
Example of the definition of an instance of a type class Arith for type Real. 
 
instance Arith Real 
where 
 (+) x y = x +. y 
 (-) x y = x -. y 


One can define as many instances of a class as one likes. Instances can be added later on in any module.  
• When an instance of a class is defined a concrete definition has to be given for all the class members. 


4.4.2 Functions Defined in Terms of Overloaded Functions 


When an overloaded name is encountered in an expression, the compiler will determine which of the corresponding 
concrete functions/operators is meant by looking at the concrete type of the expression. This type is used to determine 
which concrete function to apply. All instances of the overloaded type variable of a certain class (with exception of the 
default instance, see below) must therefore not overlap (being not unifyable) with each other and they all have to be of 
flat type (see the restrictions mentioned in 4.4.11). If it is clear from the type of the expression which one of the concrete 
instantiations is meant the compiler will in principle substitute the concrete function for the overloaded one, such that no 
efficiency is lost. 


 
Example of the substitution of a concrete function for an overloaded one). given the definitions above the function  
 
inc n = n + 1 
 
will be internally transformed into 
 
inc n = n +^ 1 


However, it is very well possible that the compiler, given the type of the expression, cannot decide which one of the 
corresponding concrete functions to apply. The new function then becomes overloaded as well. 
 
For instance, the function 
 
add x y = x + y 
 
becomes overloaded as well because anyone of the concrete instances can be applied. Consequently, add can be ap-
plied to arguments of any type as well, as long as addition (+) is defined on them. 


This has as consequence that an additional restriction must be imposed on the type of such an expression. A class 
context has to be added to the function type to express that the function can only be applied provided that the 
appropriate type classes have been instantiated (in fact one specifies the type of the dictionary record which has to be 
passed to the function in worst case). Such a context can also be regarded as an additional restriction imposed on a type 
variable, introducing a kind of bounded polymorphism.  
 
FunctionType = [{[Strict] BrackType}+ ->] Type [ClassContext] [UnqTypeUnEqualities] 
ClassContext = | ClassName-list TypeVariable {& ClassName-list TypeVariable } 
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Example of the use of a class context to impose a restriction on the instantiation of type variable). The function add can 
be applied on arguments of any type under the condition that an instance of the class Arith is defined on them. 
 
add:: a a -> a | Arith a 
add x y = x + y 


CLEAN’s type system can infer contexts automatically. If a type class is specified as restricted context the type system 
will check the correctness of the specification (as always a type specification can be more restrictive than is deduced by 
the compiler). 


4.4.3 Instances of Type Classes Defined in Terms of Overloaded Functions 


The concrete functions defined in a class instance definition can also be defined in terms of (other) overloaded functions. 
This is reflected in the type of the instantiated functions. Both the concrete type and the context the class instantiation 
(and its members) is depending on need to be specified. 
 
Example of an instance declaration of which type is depending on the same type class). The function + on lists can be 
defined in terms of the overloaded operator + on the list elements. With this definition + is defined not only on lists, but 
also on a list of lists etcetera. 
 
instance Arith [a] | Arith a       // on lists 
where 
 (+) infixl 6:: [a] [a] -> [a] | Arith a 
 (+) [x:xs] [y:ys] = [x + y:xs + ys] 
 (+) _   _  = [] 
 
 (-) infixl 6:: [a] [a] -> [a] | Arith a 
 (-) [x:xs] [y:ys] = [x - y:xs - ys] 
 (-) _   _  = [] 
 
Equality class. 
 
class Eq a 
where 
 (==) infix 2:: a a -> Bool 
 
instance Eq [a] | Eq a         // on lists 
where 
 (==) infix 2:: [a] [a] -> Bool | Eq a 
 (==) [x:xs] [y:ys] = x == y && xs == ys 
 (==) []     []  = True 
 (==) _      _ = False 


4.4.4 Type Constructor Classes 


The CLEAN type system offers the possibility to use higher order types (see 4.2.1). This makes it possible to define type 
constructor classes (similar to constructor classes as introduced in Gofer, Jones (1993)). In that case the overloaded 
type variable of the type class is not of kind X, but of higher order, e.g. X -> X, X -> X -> X, etcetera. This offers the 
possibility to define overloaded functions which can be instantiated with type constructors of higher order (as usual, the 
overloaded type variable and a concrete instantiation of this type variable need to be of the same kind). This makes it 
possible to overload more complex functions like map and the like.  
 
Example of a definition of a type constructor class. The class Functor including the overloaded function map which 
varies in type variable f of kind X -> X. 
 
class Functor f 
where 
 map:: (a -> b) (f a) -> (f b) 
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Example of an instantiation of a type constructor class. An instantiation of the well-known function map applied on lists 
([] is of kind X -> X), and a map function defined on Tree's (Tree is of kind X -> X. 
 
instance Functor [] 
where 
 map:: (a -> b) [a] -> [b] 
 map f [x:xs] = [f x : map f xs] 
 map f []  = [] 
 
::Tree a = (/\) infixl 0 (Tree a) (Tree a) 
  | Leaf a 
 
instance Functor Tree 
where 
 map:: (a -> b) (Tree a) -> (Tree b) 
 map f (l/\r)  = map f l /\ map f r 
 map f (Leaf a) = Leaf (f a) 


4.4.5 Generic Instances 


It is possible to specify a generic instance (in that case a type variable is specified as instance for the overloaded type 
variable in the instance declaration) which will be taken when none of the other defined instances happens to be applica-
ble. Since such a function must work for any instance the type of the generic instance must be equivalent to the type of 
the overloaded function. Therefore it can only perform very general tasks. 
 
Example of a generic instance. In this example any two objects of arbitrary type can be compared with each other but 
they are by default unequal unless specified otherwise. 
 
instance Eq a         // generic instance for Eq 
where 
 (==) infix 2:: a a -> Bool 
 (==) x y = False 


4.4.6 Default Instances 


It is possible that a CLEAN expression using overloaded functions is internally ambiguously overloaded.  
• The problem can occur when an overloaded function is used which has on overloaded type in which the 


overloaded type variable only appears on the right-hand side of the ->. If such a function is applied in such a way 
that the overloaded type does not appear in the resulting type of the application, any of the available instances of 
the overloaded function can be used. In that case the system cannot determine which instance to take, such that a 
type error is given. 


 
Counter example (ambiguous overloaded expression). The function body of f is ambiguously overloaded which results 
in a type error. It is not possible to determine whether its argument should be converted to an Int or to a Bool.  
 
class Read  a:: a -> String 
class Write a:: String -> a 
instance Read  Int, Bool      // export of class instance, see 4.4.10 
instance Write Int, Bool 
 
f:: String -> String  
f x = Write (Read x)       // ! This results in a type error ! 


One can solve such an ambiguity by splitting up the expression in parts that are typed explicitly such that it becomes 
clear which of the instances should be used. 
 
f:: String -> String  
f x = Write (MyRead x) 
where 
 MyRead:: Int -> String 
 MyRead x = Read x 


Another way to solve the ambiguity is to mark one of the instances as the default instance (indicated by the keyword 
default in the instance declaration) which will be taken in the case an ambiguously overloaded expression is 
encountered. 
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Example of a default instance declaration used to solve ambiguities. The function body of f is ambiguously overloaded. 
Due to the default instance specified the argument is converted to an Int.  
 
class Read  a:: a -> String 
class Write a:: String -> a 
instance Read  Int default, Bool 
instance Write Int default, Bool 
 
f:: String -> String  
f x = Write (Read x) 


4.4.7 Defining Derived Members in a Class 


The members of a class consists of a set of functions or operators which logically belong to each other. It is often the 
case that the effect of some members (derived members) can be expressed in others. For instance, <> can be regarded 
as synonym for not (==). For software engineering (the fixed relation is made explicit) and efficiency (one does not 
need to include such derived members in the dictionary record) it is good to make this relation explicit. In CLEAN the 
existing macro facilities (see Chapter 5) are used for this purpose.  
 
Classes with macro definitions to specify derived members. 
 
class Eq a 
where 
 (==) infix 2:: a a -> Bool 
 
 (<>) infix 2:: a a -> Bool | Eq a 
 (<>) x y :== not (x == y) 
     
class Ord a 
where 
 (<) infix 2:: a a -> Bool 
 
 (>) infix 2:: a a -> Bool | Ord a 
 (>) x y :== y < x  
 
 (<=) infix 2:: a a -> Bool | Ord a 
 (<=) x y :== not (y<x) 
 
 (>=) infix 2:: a a -> Bool | Ord a 
 (>=) x y :== not (x<y)  
 
 min:: a a -> a | Ord a 
 min x y :== if (x<y) x y 
 
 max:: a a -> a | Ord a 
 max x y :== if (x<y) y x 


4.4.8 A Shorthand for Defining Overloaded Functions 


A class definition seems sometimes a bit overdone when a class actually only consists of one member. Special syntax is 
provided for this case.  
 
TypeClassDef = class  ClassName TypeVariable [ClassContext] 
  [[where] { {ClassMemberDef}+ }] 
 | class FunctionName TypeVariable :: FunctionType; 
 | class (FunctionName) [Fix][Prec] TypeVariable :: FunctionType; 
 
Example of an overloaded function/operator. 
 
class (+) infixl 6 a:: a a -> a 


which is shorthand for: 
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class + a 
where 
 (+) infixl 6:: a a -> a 


The instantiation of such a simple one member class is done in a similar way as with ordinary classes, using the name of 
the overloaded function as class name (see the syntax definition for instantiation). 
 
Example of an instantiation of an overloaded function/operator. 
 
instance + Int  
where 
 (+) x y = x +^ y 


4.4.9 Classes Defined in Terms of Other Classes 


In the definition of a class one can optionally specify that other classes which already have been defined elsewhere are 
included. The classes to include are specified as context after the overloaded type variable. It is not needed (but it is 
allowed) to define new members in the class body of the new class. In this way one can give a new name to a collection 
of existing classes creating a hierarchy of classes (cyclic dependencies are forbidden). Since one and the same class 
can be included in several other classes, one can combine classes in different kinds of meaningful ways. For an example 
have a closer look at the CLEAN standard library (see e.g. StdOverloaded and StdClass) 
 
Example of defining classes in terms of existing classes. The class Arith consists of the class + and -. 
 
class (+) infixl 6 a:: a a -> a 
 
class (-) infixl 6 a:: a a -> a 
 
class Arith a | +,- a 


4.4.10 Exporting Type Classes 


To export a class one simply repeats the class definition in the definition module (see Chapter 2). To export an 
instantiation of a class one simply repeats the instance definition in the definition module, however without revealing the 
concrete implementation (which can only be specified in the implementation module). 
 
Exporting classes and instances. 
 
definition module example 
 
class Eq a       // the class Eq is exported 
where 
 (==) infix 2:: a a -> Bool 
 
instance Eq [a] | Eq a     // an instance of Eq on lists is exported 
instance Eq  a      // a generic instance of Eq is exported 


For reasons of efficiency the compiler will always try to make specialised efficient versions of functions which have 
become overloaded (see above). In principle one version is made for each possible concrete application. However, when 
an overloaded function is exported it is unknown with which concrete instances the function will be applied. So, a record 
is constructed in which the concrete function is stored as is explained in the introduction of this Section. This approach 
can be very inefficient, especially in comparison to a specialised version for instantiations of basic type. The compiler 
can generate much better code for other modules if it is informed about the instances known in the implementation mod-
ule. The compiler is unaware of such information (it only inspects definition modules in case of separate compilation). 
The information should therefore be provided in the corresponding definition module. To make this possible a special 
export definition is provided. It is recommended to add such an export definition if speed matters, leaf it out when it does 
not matter or when a small code size matters more. The export definition will only have an effect for instances of basic 
type (for these types it can really help to have a special version). 
 
TypeClassInstanceExportDef = export ClassName BasicType-list; 
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Exporting class instances. 
 
export Eq Int, Real 


4.4.11 Semantic Restrictions on Type Classes 


Semantic restrictions: 
• When a class is instantiated a concrete definition must be given for each of the members in the class (not for 


derived members). 
• The type of a concrete function or operator must exactly match the overloaded type after uniform substitution of the 


overloaded type variable by the concrete type as specified in the corresponding type instance declaration. 
• The overloaded type variable and the concrete type must be of the same kind. 
• A type instance of an overloaded type must be a flat type , i.e. a type of the form T a1 … an where ai are type 


variables which are all different. 
• All instances other than the default instance of a given overloaded type must differ from each other (be ununifyable 


with each other). 
• It is not allowed to use a type synonym as instance. 
• The start rule cannot have an overloaded type. 
• If a default instance is specified the type of the corresponding concrete default function must be identical to the 


type of the overloaded function or operator. 
• For the specification of derived members in a class the same restrictions hold as for defining macros. 
• A restricted context can only be imposed on one of the type variables appearing in the type of the expression.  
• The specification of the concrete functions can only be given in implementation modules.  


4.4.12 The Costs of Overloading 


In Section 4.4 the overloading mechanism of CLEAN is treated. The use of overloading and type classes certainly gives a 
lot of notational convenience. However, one should be aware of the time and space costs that might be caused by using 
overloading and type classes.  


When an overloaded function is used in such a way that the system can replace the overloaded function by the concrete 
one, no overhead is introduced (see Section 4.4). 


Overloading can cause code explosion. When in a certain function another overloaded function is applied in such a way 
that the type system cannot deduce which concrete instance of the overloaded function has to be used the system will in 
principle generate several versions of the function: one version is made for each of the concrete (combination of) 
instances possible. In principle special versions will only be generated for instantiations of basic types. Although the 
system avoids to generate versions that are not being used, code explosion might occur when all versions are being 
used or when the system simply cannot tell which versions are used. The latter can be the case when such functions are 
being exported to other modules. 


Overloading can cause inefficiency. Instances which are recursively defined in terms of the class itself can lead to an 
infinite amount of concrete instances. New instances can also be declared in modules that import the overloaded 
function. To handle all these cases the system will generate one special version of the overloaded function which is 
parametrised with a type class record (see the introduction of 4.4). In such cases overloading is implemented by using 
records as a dictionary in which the concrete function is looked up. This means that the record is used to store higher 
order functions. Calling such a higher function in this way is much more inefficient than a direct call of the corresponding 
concrete function. One can avoid unnecessary efficiency loss as follows. When an overloaded function is exported it is 
advised also to export the concrete instances of the overloaded functions. The concrete names of the functions need not 
to be exported. The system needs only to know which concrete instances already exist. 


4.5 Defining Uniqueness Types 


Although CLEAN is purely functional, operations with side-effects (I/O operations, for instance) are permitted. To achieve 
this without violating the semantics, the classical types are supplied with so called uniqueness attributes. If an argument 
of a function is indicated as unique, it is guaranteed that at run-time the corresponding actual object is local, i.e. there are 
no other references to it. Clearly, a destructive update of such a “unique object” can be performed safely. 







56 CLEAN LANGUAGE REPORT VERSION 1.3.1 


 


The uniqueness type system makes it possible to define direct interfaces with an operating system, a file system 
(updating persistent data), with GUI's libraries, it allows to create arrays, records or user defined data structures that can 
be updated destructively. The time and space behaviour of a functional program therefore greatly benefits from the 
uniqueness typing. 


Uniqueness types are deduced automatically. Type attributes are polymorphic: attribute variables and inequalities on 
these variables can be used to indicate relations between and restrictions on the corresponding concrete attribute 
values. 


Sometimes the inferred type attributes give some extra information on the run-time behaviour of a function. The 
uniqueness type system is a transparent extension of classical typing which means that if one is not interested in the 
uniqueness information one can simply ignore it. 


Since the uniqueness typing is a rather complex matter we explain this type system and the motivation behind it in more 
detail. The first Section (4.5.1) explains the basic motivation for and ideas behind uniqueness typing. Section 4.5.2 
focusses on the so-called uniqueness propagation property of (algebraic) type constructors. Then we show how new 
data structures can be defined containing unique objects (Section 4.5.3). Sharing may destroy locality properties of 
objects. In Section 4.5.4 we describe the effect of sharing on uniqueness types. In order to maintain referential 
transparency, it appears that function types have to treated specially. The last Section (4.5.5) describes the combination 
of uniqueness typing and overloading. Especially, the subsections on constructor classes and higher-oder type defini-
tions are very complex: we suggest that the reader skips these sections at first instance.  


4.5.1 Basic Ideas Behind Uniqueness Typing 


The uniqueness typing is an extension of classical Milner/Mycroft typing. In the uniqueness type system uniqueness type 
attributes  are attached to the classical types. Uniqueness type attributes appear in the type specifications of functions 
(see 4.5.4) but are also permitted in the definitions of new data types (see 4.5.3). A classical type can be prefixed by one 
of the following uniqueness type attributes: 
 
Type = {BrackType}+ 
BrackType = [TypeAttrib] SimpleType 
UnqTypeAttrib = *         // type attribute "unique" 
 | UniqueTypeVariable:     // a type attribute variable  
 | .         // an anonymous type attribute variable 


The basic idea behind uniqueness typing is the following. Suppose a function, say F, has a unique argument (an 
argument with type *σ, for some σ). This attribute imposes an additional restriction on applications of F.  
- It is guaranteed that F will have private ("unique") access to this particular argument (see Barendsen and Smet-


sers, 1993; Plasmeijer and Van Eekelen, 1993): the object will have a reference count of 11 at the moment it is in-
spected by the function. It is important to know that there can be more than 1 reference to the object before this 
specific access takes place. If a uniquely typed argument is not used to construct the function result it will become 
garbage (the reference has dropped to zero). Due to the fact that this analysis is performed statically the object can 
be garbage collected (see Chapter 1) at compile-time. It is harmless to reuse the space occupied by the argument 
to create the function result. In other words: it is allowed to update the unique object destructively without any 
consequences for referential transparency. 


 
Example: the I/O library function fwritec is used to write a character to a file yielding a new file as result. In general it is 
semantically not allowed to overwrite the argument file with the given character to construct the resulting file. However, 
by demanding the argument file to be unique by specifying 
 
fwritec:: Char *File -> *File 


it is guaranteed by the type system that fwritec has private access to the file such that overwriting the file can be done 
without violating the functional semantics of the program. The resulting file is unique as well and can therefore be passed 
as continuation to another call of e.g. fwritec to make further writing possible. 
 


                                                 
1 Note that it is very natural in Clean to speak about references due to the underlying graph rewriting semantics of 
the language: it is always clear when objects are being shared or when cyclic structures are being created. 
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WriteABC:: *File -> *File 
WriteABC file = fwritec 'c' (fwritec 'b' (fwritec 'a' file)) 
  
 Observe that a unique file is passed in a single threaded way (as a kind of unique token) from one function to 


another where each function can safely modify the file knowing that is has private access to that file. One can 
make these intermediate files more vissible by by writing the WriteABC as follows. 


 
WriteABC file = file3 
where 
 file1 = fwritec 'a' file 
 file2 = fwritec 'b' file1 
 file3 = fwritec 'c' file2 
 
 or, alternatively (to avoid the explicit numbering of the files), 
 
WriteABC file 
 # file = fwritec 'a' file 
  file = fwritec 'b' file 
 = fwritec 'c' file 
    
 The type system makes it possible to make no distinction between a CLEAN file and a physical file of the real world: 


file I/O can be treated as efficiently as in imperative languages. 
 The uniqueness typing prevents writing while other readers/writers are active. E.g. one cannot apply fwritec to a 


file being used elsewhere 


For instance, the following expression is not approved by the type system: 
 
(file, fwritec 'a' file) 
 
- Function arguments with no uniqueness attributes added to the classical type are considered as “non-unique”: 


there are no reference requirements for these arguments. The function is only allowed to have read access (as 
usual in a functional language) even if in some of the function applications to actual argument appears to have 
reference count 1. 


 
freadc:: File -> (Char, File) 
 
 The function freadc can be applied to both a unique as well as non-unique file. This is fine since the function only 


wants read access on the file. The type indicates that the result is always a non-unique file. Such as file can be 
passed for further reading, but not for further writing. 


- To indicate that functions don’t change uniqueness properties of arguments, one can use attribute variables. The 
most simple example is the identity functions that can be typed as follows: 


 
id:: u:a -> u:a 
id x = x 


 Here a is an ordinary type variable, whereas u is an attribute variable. If id is applied to an unique object the result 
is also unique (in that case u is instantiated with the concrete attribute *). Of course, if id is applied to a non-
unique object, the result remains non-unique. As with ordinary type variables, attribute variables should be 
instantiated uniformly. 


 A more interesting example is the function freadc which is typed as 
 
freadc:: u:File -> u:(Char, u:File) 


 Again freadc can be applied to both unique and non-unique files. In the first case the resulting file is also unique 
and can, for example, be used for further reading or writing. Moreover, observe that not only the resulting file is 
attributed, but also the tuple containing that file and the character that has been read. This is due to the so called 
uniqueness propagation rule; see below. 
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To summarize, uniqueness typing makes it possible to update objects destructively within a purely functional language. 
For the development of real world applications (which manipulate files, windows, arrays, databases, states etc.) this is an 
indispensable property. 


4.5.2 Attribute Propagation 


Having explained the general ideas of uniqueness typing, we can now focus on some details of this typing system. 


If a unique object is stored in a data structure, the data structure itself becomes unique as well. This uniqueness 
propagation rule prevents that unique objects are shared indirectly via the data structure in which these objects are 
stored. To explain this form of hidden sharing, consider the following definition of the function head 
 
head:: [*a] -> *a 
head [hd:tl] = hd 


The pattern causes head to have access to the “deeper” arguments hd and tl. Note that head does not have any 
uniqueness requirements on its direct list argument. This means that in an application of head the list might be shared, 
as can be seen in the following function heads 
 
heads list = (head list, head list) 


If one wants to formulate uniqueness requirements on, for instance, the hd argument of head, it is not sufficient to 
attribute the corresponding type variable a with *; the surrounding list itself should also become unique. One can easily 
see that, without this additional requirement the heads example with type 
 
heads:: [*a] -> (*a,*a)  
heads list = (head list, head list)  


would still be valid although it delivers the same object twice. By demanding that the surrounding list becomes unique as 
well, (so the type of head becomes head:: *[*a] -> *a) the function heads is rejected. In general one could say that 
uniqueness propagates outwards. 


Some of the readers will have noticed that, by using attribute variables, one can assign a more general uniqueness type 
to head: 
 
head:: u:[u:a] -> u:a 


The above propagation rule imposes additional (implicit) restrictions on the attributes appearing in type specifications of 
functions. 


Another explicit way of indicating restrictions on attributes is by using coercion statements. These statements consist of 
attribute variable inequalities of the form u <= v. The idea is that attribute substitutions are only allowed if the resulting 
attribute inequalities are valid, i.e. not resulting in an equality of the form 


‘non-unique ≤ unique’. 


The use of coercion statements is illustrated by the next example in which the uniqueness type of the well-known 
append function is shown. 
 
append:: v:[u:a] w:[u:a] -> x:[u:a],  [v<=u, w<=u, x<=u,w<=x] 


The first three coercion statements express the uniqueness propagation for lists: if the elements a are unique (by 
choosing * for u) these statements force v,w and x to be instantiated with * also. (Note that u <= * iff u = *.) The 
statement w <= x expresses that the spine uniqueness of append’s result depends only on the spine attribute w of the 
second argument. 


In CLEAN it is permitted to omit attribute variables and attribute inequalities that arise from propagation properties; these 
will be added automatically by the type system. As a consequence, the following type for append is also valid. 
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append:: [u:a] w:[u:a] -> x:[u:a],  [w<=x] 


Of course, it is always allowed to specify a more specific type (by instantiating type or attribute variables). All types given 
below are valid types for append. 
 
append:: [u:a] x:[u:a] -> x:[u:a], 
append:: *[*Int] *[*Int] -> *[*Int], 
append:: [a] *[a] -> *[a]. 


To make types more readable, CLEAN offers the possibility to use anonymous attribute variables. These can be used as 
a shorthand for indicating attribute variables of which the actual names are not essential. This allows us to specify the 
type for append as follows.  
 
append:: [.a] w:[.a] -> x:[.a],  [w<=x] 


The type system of CLEAN will substitute real attribute variables for the anonymous ones. Each dot gives rise to a new 
attribute variable except for the dots attached to type variables: type variables are attributed uniformly in the sense that 
all occurrences of the same type variable will obtain the same attribute. In the above example this means that all dots are 
replaced by one and the same new attribute variable. 


4.5.3 Defining New Types with Uniqueness Attributes 


Although one mostly uses uniqueness attributes in type specifications of functions, they are also allowed in the definition 
of new data types. 
 
AlgebraicTypeDef = ::TypeLhs =  [QuantifiedVariables :] ConstructorDef {|ConstructorDef} ; 
 
TypeLhs = [*]TypeConstructor {[*] TypeVariable}  
TypeConstructor  = TypeName 
 
ConstructorDef = ConstructorName {[Strict] BrackType} 
 | (ConstructorName) [Fix][Prec] {[Strict] BrackType} 
QuantifiedVariables = {E. TypeVariable}+ 
BrackType = [UnqTypeAttrib] SimpleType 
UnqTypeAttrib = * 
 | UniqueTypeVariable: 
 | . 


As can be inferred from the syntax, the attributes that are actually allowed in data type definitions are ‘*’ and ‘.’; attribute 
variables are not permitted. The (unique) * attribute can be used at any subtype whereas the (anonymous). attribute is 
restricted to non-variable positions. 


If no uniqueness attributes are specified, this does not mean that one can only build non-unique instances of such a data 
type. Attributes not explicitly specified by the programmer are added automatically by the type system. To explain this 
standard uniqueness attribution mechanism, first remember that the types of data constructors are not specified by the 
programmer but derived from their corresponding data type definition. For example, the (classical) definition of the List 
type 
 
:: List a = Cons a (List a) | Nil 


leads to the following types for its data constructors. 
 
Cons:: a (List a) -> List a 
Nil:: List a 


To be able to create unique instances of data types, the standard attribution of CLEAN will automatically derive ap-
propriate uniqueness variants for the types of the corresponding data constructors. Such a uniqueness variant is 
obtained via a consistent attribution of all types and subtypes appearing in a data type definition. Here, consistency 
means that such an attribution obeys the following rules (assume that we have a type definition for some type T). 
• Attributes that are explicitly specified are adopted. 
• Each (unattributed) type variable and each occurrence of T will receive an attribute variable. This is done in a 


uniform way: equal type variables will receive equal attributes, and all occurrence of T are also equally attributed. 
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• Attribute variables are added at non-variable positions if they are required by the propagation properties of the 
corresponding type constructor. The attribute variable that is chosen depends on the argument types of this 
constructor: the attribution scheme takes the attribute variable of first argument appearing on a propagating 
position (see example below). 


• All occurrences of the. attribute are replaced by the attribute variable assigned to the occurrences of T. 
 
Example of standard attribuation for data constructors. For Cons the standard attribution leads to the type 
 
Cons:: u:a v:(List u:a) -> v:List u:a, [v<=u] 
 
The type of Nil becomes 
 
Nil:: v:List u:a, [v<=u] 
 
Consider the following Tree definition 
 
:: Tree a = Node a [Tree a] 
 
The type of the data constructor Node is 
 
Node:: u:a v:[v:Tree u:a] -> v:Tree u:a, [v<=u] 
 
Another Tree variant. 
 
:: Tree *a = Node *a [Tree *a] 
 
leading to  
 
Node:: *a *[*Tree *a] -> *Tree *a 
 
Note that, due to propagation, all subtypes have become unique. 


Next, we will formalize the notion of uniqueness propagation. We say that an argument of a type constructor, say T, is 
propagating if the corresponding type variable appears on a propagating position in one of the types used in the right-
hand side of T’s definition. A propagating position are characterized by the fact that it is not surrounded by an arrow type 
or by a type constructor with non-propagating arguments. Observe that the definition of propagation is cyclic: a general 
way to solve this problem is via a fixedpoint construction. 
 
Example of the propagation rule. Consider the (record) type definition for Object. 
 
Object a b:: {state:: a, fun:: b -> a} 
 
The argument a is propagating. Since b does not appear on a propagating position inside this definition, Object is not 
propagating in its second argument. 


4.5.4 Uniqueness and Sharing 


The type inference system of CLEAN will derive uniqueness information after the classical Milner/Mycroft types of func-
tions have been inferred (see 4.3). As explained in Section 4.5.1, a function may require a non-unique object, a unique 
object or a possibly unique object. Uniqueness of the result of a function will depend on the attributes of its arguments 
and how the result is constructed. Until now, we distinguished objects with reference count 1 from objects with a larger 
reference count: only the former might be unique (depending on the uniqueness type of the object itself). In practice, 
however, one can be more liberal if one takes the evaluation order into account. The idea is that multiple reference to an 
(unique) object are harmless if one knows that only one of the references will be present at the moment it is accessed 
destructively. This has been used in the following function. 
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AppendAorB:: *File -> *File 
AppendAorB file 
 | fc == 'a' = fwritec 'a' file 
     = fwritec 'b' file 
where 
 (fc,nf) = freadc file 


When the right-hand side of AppendAorB is evaluated, the guard is determined first (so access from freadc to file is 
not unique), and subsequently one of the alternatives is chosen and evaluated. Depending on cond, either the reference 
from the first fwritec application to function file or that of the second application is left and therefore unique. 


For this reason, the uniqueness type system uses a kind of sharing analysis . This sharing analysis is input for the 
uniqueness type system itself to check uniqueness type consistency (see 4.5.3). The analysis will label each reference in 
the right-hand side of a function definition as read-only (if destructive access might be dangerous) or write-permitted 
(otherwise). Objects accessed via a read-only reference are always non-unique. On the other hand, uniqueness of 
objects accessed via a reference labeled with write-permitted solely depend on the types of the objects themselves.  


Before describing the labeling mechanism of CLEAN we mention that the “lifetime” of references is determined on a 
syntactical basis. For this reason we classify references to the same expression in a function definition (say for f) 
according to their estimated run-time use, as alternative, observing and parallel. 
- Two references are alternative if they belong to different alternatives of f. Note that alternatives are distinguished 


by patterns (including case expressions) or by guards. 
- A reference r is observing w.r.t. a reference r’ if the expression containing r’ is either (1) guarded by an 


expression or (2) preceded by a strict let expression containing r. 
- Otherwise, references are in parallel. 


The rules used by the sharing analysis to label each reference are the following. 
- A reference, say r, to a certain object is labeled with read-only if there exist another reference, say r’, to the same 


object such that either r is observing w.r.t r’ or r and r’ are in parallel. 
- Multiple references to cyclic structures are always labeled as read-only. 
- All other references are labeled with write-permitted. 


Unfortunately, there is still a subtlety that has to be dealt with. Observing references belonging in a strict context do not 
always vanish totally after the expression containing the reference has been evaluated: further analysis appears to be 
necessary to ensure their disappearance. More concretely, Suppose e[r] denotes the expression containing r. If the 
type of e[r] is a basic type then, after evaluation, e[r] will be reference-free. In particular, it does not contain the 
reference r anymore. However, If the type of e[r] is not a basic type it is assumed that, after evaluation, e[r] might 
still refer to r. But even in the latter case a further refinement is possible. The idea is, depending on e[r], to correct the 
type of the object to which r refers partially in such way that only the parts of this object that are still shared lose their 
uniqueness. 
 
Consider, for example, the following rule 
 
f l = 
 let! 
  x = hd (hd l) 
 in 
  (x, l) 
Clearly, x and l share a common substructure; x is even part of l. But the whole “spine” of l (of type [[...]]) does 
not contain any new external references. Thus, if l was spine-unique originally, it remains spine unique in the result of f. 
Apparently, the access to l only affected part of l’s structure. More technically, the type of l itself is corrected to take 
the partial access on l into account. In the previous example, x, regarded as a function on l has type [[a]] -> a. In f’s 
definition the part of l’s type corresponding to the variable a is mode non-unique. This is clearly reflected in the derived 
type for f, being 
 
f:: u:[w:[a]] -> (a,v:[x:[a]]), [w <= x, u <= v] 


In CLEAN this principle has been generalized: If the strict let expression e[r] regarded as a function on r has type 
 







62 CLEAN LANGUAGE REPORT VERSION 1.3.1 


 


T (... a...) -> a 


Then the a-part of the type of the object to which r refers becomes non-unique; the rest of the type remains unaffected. If 
the type of e[r] is not of the indicated form, r is not considered as an observing reference (w.r.t. some reference r’), 
but, instead, as in parallel with r’. 


Higher Order Uniqueness Typing 


Higher-order functions give rise to partial (often called Curried) applications, i.e. applications in which the actual number 
of arguments is less than the arity of the corresponding symbol. If these partial applications contain unique sub-
expressions one has to be careful. Consider, for example the following the function fwritec with type 
 
fwritec:: *File Char -> *File  


in the application 
 
fwritec unifile 


(assuming that unifile returns a unique file). Clearly, the type of this application is of the form o:(Char -> *File). 
The question is: what kind of attribute is o? Is it a variable, is it *, or, is it not unique? Before making a decision, one 
should notice that it is dangerous to allow the above application to be shared. For example, if the expression fwritec 
unifile is passed to a function 
 
WriteAB write_fun = (write_fun ‘a’, write_fun ‘b’) 


Then the argument of fwritec is not longer unique at the moment one of the two write operations take place. 
Apparently, the fwritec unifile expression is essentially unique: its reference count should never become greater 
than 1. To prevent such an essentially unique expression from being copied, CLEAN considers the -> type constructor in 
combination with the * attribute as special: it is not permitted to discard its uniqueness. Now, the question about the 
attribute o can be answered: it is set to *. If WriteAB is typed as follows 
 
WriteAB:: (Char -> u:File) -> (u:File, u:File) 
WriteAB write_fun = (write_fun ‘a’, write_fun ‘b’) 


the expression WriteAB (fwritec unifile) is rejected by the type system because it does not allow the argument of 
type *(Char -> *File) to be coerced to (Char -> u:File). One can easily see that it is impossible to type WriteAB 
in such a way that the expression becomes typable. 


To define data structures containing Curried applications it is often convenient to use the (anonymous). attribute. 
Example 
 
:: Object a b = { state:: a, fun::.(b -> a) } 
 
new:: * Object *File Char 
new = { state = unifile, fun = fwritec unifile } 


By adding an attribute variable to the function type in the definition of Object, it is possible to store unique functions in 
this data structure. This is shown by the funcion new. Since new contains an essentially unique expression it becomes 
essentially unique itself. So, new can never loose its uniqueness, and hence, it can only be used in a context in which a 
unique object is demanded. 


Determining the type of a Curried application of a function (or data constructor) is somewhat more involved if the type of 
that function contains attribute variables instead of concrete attributes. Mostly, these variables will result in additional 
coercion statements. as can be seen in the example below. 
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Prepend:: u:[.a] [.a] -> v:[.a], [u<=v] 
Prepend a b = Append b a 
 
PrependList:: u:[.a] -> w:([.a] -> v:[.a]),  [u<=v, w<=u] 
PrependList a = Prepend a 


Some explanation is in place. The expression (PrependList some_list) yields a function that, when applied to 
another list, say other_list, delivers a new list extended consisting of the concatenation of other_list and 
some_list. Let’s call this final result new_list. If new_list should be unique (i.e. v becomes *) then, because of the 
coercion statement u<=v the attribute u also becomes *. But, if u = * then also w = *, for, w<=u. This implies that (arrow) 
type of the original expression (PrependList some_list) becomes unique, and hence this expression cannot be 
shared. 


Uniqueness Type Coercions 


As said before, offering a unique object to a function which requires a non-unique argument is safe (unless we are 
dealing with unique arrow types; see above). The technical tool to express this is via a coercion (subtype) relation based 
on the ordering 


‘unique’ ≤ ‘non-unique’ 


on attributes. Roughly, the validity of σ ≤ σ’ depends subtype-wise on the validity of u ≤ u’ with u,u’ attributes in σ,σ’. 
One has, for example 


u:[v:[w:Int]] ≤ u’:[v’:[w’:Int]] iff u ≤ u’, v ≤ v’, w ≤ w’. 


However, a few refinements are necessary. Firstly, the uniqueness constraints expressed in terms of coercion 
statements (on attribute variables) have to be taken into account. Secondly, the coercion restriction on arrow types 
should be handled correctly. And thirdly, due to the so-called contravariance of -> in its first argument we have that 


u:(σ -> σ’) ≤ u:(τ -> τ’) iff τ ≤ σ, σ’ ≤ τ’ 


Since -> may appear in the definitions of algebraic type constructors, these constructors may inherit the co- and 
contravariant subtyping behaviour with respect to their arguments. We can classify the ‘sign’ of the arguments of each 
type constructor as + (positive, covariant), - (negative, contravariant) or top (both positive and negative). In general this is 
done by analysing the (possible mutually recursive) algebraic type definitions by a fixedpoint construction, with basis 
sign(->) = (-,+). 
 
Example: a has sign T, b has sign + in 
 
::FunList a b = FunCons (a, a -> b) (FunList a b) 
   | FunNil 


This leads to the following coercion rules 
• Attributes of two corresponding type variables as well as of two corresponding arrow types must be equal. 
• The sign classification of each type constructor is obeyed. If, for instance, the sign of Τ’s argument is negative, 


then 
 Τ σ ≤ Τ σ’ iff σ’ ≤ σ 


• In all other cases, the validity of a coercion relation depends on the validity of u ≤ u’, where u,u’ are attributes of 
the two corresponding subtypes. 


The presence of sharing inherently causes a (possibly unique) object to become non-unique, if it is accessed via a read-
only reference. In CLEAN this is achieved by a type correction operation which converts each unique type S to its 
smallest non-unique supertype, simply by making the outermost attribute of S non-unique. Note that this operation fails if 
S is a function type. 


4.5.5 Combining Uniqueness Typing and Overloading 


An overloaded function actually stands for a collection of real functions. The types of these real functions are obtained 
from the type of the overloaded function by substituting the corresponding instance type for the class variable. These 
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instance types may contain uniqueness information, and, due to the propagation requirement, the above-mentioned 
substitution might give rise to uniqueness attributes overloaded type specification. 


Consider, for instance, the identity class 
 
class id a:: a -> a 


If we want to define an instance of id for lists, say id L, which leaves uniqueness of the list elements intact, the (fully 
expanded) type of idL becomes 
 
instance id L v:[u:a] -> v:[u:a] 


However, as said before, the type specification of such an instance is not specified completely: it is derived from the 
overloaded type in combination with the instance type (i.e. [...] in this particular example). 


In CLEAN we require that the type specification of an overloaded operator anticipates on attributes arising from 
uniqueness propagation, that is, the uniqueness attribute of the class variable should be chosen in such a way that for 
any instance type this `class attribute’ does not conflict with the corresponding uniqueness attribute(s) in the fully 
expanded type of this instance. In the above example this means that the type of id becomes 
 
class id a:: a -> a 


Another possibility is  
 
class id a:: *a -> *a 


However, the latter version of id will be more restrictive in its use, since it will always require that its argument is unique. 


Constructor Classes 


The combination of uniqueness typing and constructor classes (with their higher-order class variables) introduces 
another difficulty. Consider, for example, the overloaded map function. 
 
class map m:: (a -> b) (m a) -> m b 


Suppose we would add (distinct) attribute variables to the type variables a and b (to allow `unique instances’ of map) 
 
class map m:: (.a ->.b) (m.a) -> m.b 


The question that arises is: Which attributes should be added to the two applications of the class variable m? Clearly, this 
depends on the actual instance type filled in for m. E.g., if m is instantiated with a propagating type constructor (like []), 
the attributes of the applications of m are either attribute variables or the concrete attribute ‘unique’. Otherwise, one can 
chose anything. 
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Example 
 
instance map [] 
where 
 map f l = [ f x // x <- l ] 
 
:: T a = C (Int -> a) 
 
instance map T 
where 
 map f (C g) = C (f o g) 
 
In this example, the respective expanded type of the both instances are 
 
map:: (u:a -> v:b) w:[u:a] -> x:[v:b], w <= u, x <= v 
 
map:: (u:a -> v:b) (T u:a) -> T v:b 


The type system of CLEAN requires that a possible propagation attribute is explicitly indicated in the type specification of 
the overloaded function. In order to obtain versions of map producing spine unique data structures, its overloaded type 
should be specified as follows: 
 
class map m:: (.a ->.b).(m.a) ->.(m.b) 


This type will provide that for an application like 
 
map inc [1,2,3]  


indeed yields a spine unique list. 


Observe that if you would omit the (anonymous) attribute variable of the second argument, the input data structure 
cannot contain unique data on propagating positions, e.g. one could not use such a version of map for mapping a 
destructive write operator on a list of unique files. 


In fact, the propagation rule is used to translate uniqueness properties of objects into uniqueness properties of the data 
structures in which these objects are stored. As said before, in some cases the actual data structures are unknown. 


Consider the following function 
 
DoubleMap f l = (map f l, map f l)  


The type of this function is something like 
 
DoubleMap:: (.a ->.b) (m.a) -> (.(m.b),.(m.b)) 


Clearly, l is duplicated. However, this does not necessarily mean that a cannot be unique anymore. If, for instance, m is 
instantiated with a non-propagating type constructor (like Τ as defined on the previous page) then uniqueness of a is still 
permitted. On the other hand, if m is instantiated with a propagating type constructor, a unique instantiation of a should 
be disapproved. In CLEAN, the type system `remembers’ sharing of objects (like l in the above example) by making the 
corresponding type attribute non-unique. Thus, the given type for DoubleMap is exactly the type inferred by CLEAN’s 
type system. If one tries to instantiate m with a propagating type constructor, and, at the same type, a with some unique 
type, this will fail. 


The presence of higher-order class variables, not only influences propagation properties of types, but also the coercion 
relation between types. These type coercions depend on the sign classification of type constructors. The problem with 
higher-order polymorphism is that in some cases the actual type constructors substituted for the higher order type 
variables are unknown, and therefore one cannot decide whether coercions in which higher-order type variable are 
involved, are valid. 


Consider the functions 
 







66 CLEAN LANGUAGE REPORT VERSION 1.3.1 


 


double x = (x,x) 
dm f l = double (map f l) 


Here, map’s result (of type.(m.a)) is coerced to the non-unique supertype (m.a). However, this is only allowed if m is 
instantiated with type constructors that have no coercion restrictions. E.g., if one tries to substitute *WriteFun for m, 
where 
 
WriteFun a = C.(a -> *File) 


this should fail, for, *WriteFun is essentially unique. The to solve this problem is to restrict coercion properties of type 
variable applications (m σ) to 


u:(m σ) ≤ u:(m τ) iff σ ≤ τ && τ ≤ σ 


A slightly modified version of this solution has been adopted in CLEAN. For convenience, we have added the following 
refinement. The instances of type constructors classes are restricted to type constructors with no coercion restrictions. 
Moreover, it is assumed that these type constructors are uniqueness propagating. This means that the WriteFun 
cannot be used as an instance for map. Consequently, our coercion relation we can be more liberal if it involves such 
class variable applications. 


Overruling this requirement can be done adding the anonymous attribute. the class variable. E.g. 
 
class map.m:: (.a ->.b).(m.a) ->.(m.b) 


Now 
instance map WriteFun 
where 
 map.. 


is valid, but the coercions in which (parts of) map’s type are involved are now restricted as explained above. 


To see the difference between the two indicated variants of constructor variables, we slightly modify map’s type. 
 
class map m:: (.a ->.b) *(m.a) ->.(m.b) 


Without overruling the instance requirement for m the type of dm (dm as given on the previous page) becomes. 
 
dm:: (.a ->.b) *(m.a) ->.(m b, m b) 


Observe that the attribute of disappeared due to the fact that each type constructor substituted for m is assumed to be 
propagating.  


If one explicitly indicates that there are no instance restriction for the class variable m (by attributing m with.), the function 
dm becomes untypable. 


4.5.6 Higher-Order Type Definitions 


We will describe the effect of uniqueness typing on type definitions containing higher-order type variables. At it turns out, 
this combination introduces a number of difficulties which would make a full description very complex. But even after 
skipping a lot of details we have to warn the reader that some of the remaining parts are still hard to understand.  


As mentioned earlier, two properties of newly defined type constructor concerning uniqueness typing are important, 
namely, propagation and sign classification. One can probably image that, when dealing with higher-order types the 
determination on these properties becomes more involved. Consider, for example, the following type definition. 
 
:: T m a = C (m a) 


The question whether T is propagating in its second argument cannot be decided by examining this definition only; it 
depends on the actual instantiation of the (higher-order) type variable m. If m is instantiated with a propagating type 
constructor, like [], then T becomes propagating in its second argument as well. Actually, propagation is not only a 
property of type constructors, but also of types themselves, particularly of `partial types’ For example, the partial type [] 
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is propagating in its (only) argument (Note that the number of arguments a partial type expects, directly follows from the 
kinds of the type constructors that have been used). The type T [] is also propagating in its argument, so is the type T 
((,) Int)).  


The analysis in CLEAN that determines propagation properties of (partial) types has been split into two phases. During 
the first phase, new type definitions are examined in order to determine the propagation dependencies between the 
arguments of each new type constructor. To explain the idea, we return to our previous example. 
 
:: T m a = C (m a) 


First observe that the propagation of the type variable m is not interesting because m does not stand for `real data’ (which 
is always of kind *). We associate the propagation of m in T with the position(s) of the occurrence(s) of m’s applications. 
So in general, T is propagating in a higher-order variable m if one of m’s applications appears on a propagating position in 
the definition of T. Moreover, for each higher order type variable, we determine the propagation properties of all first 
order type variables in the following way: m is propagating in a, where m and a are higher-order respectively first-order 
type variables of T, if a appears on a propagating position in one of m’s applications. In the above example, m is prop-
agating in a, since a is on a propagating position in the application (m a). During the second phase, the propagation 
properties of (partial) types are determined using the results of the first phase. This (roughly) proceeds as follows. 
Consider the type T σ for some (partial) type σ, and T as defined earlier. First, determine (recursively) the propagation of 
σ. Then the type T σ is propagating if (1) σ is propagating, (2) T is propagating in m, and moreover (3) m is propagating in 
a (the second argument of the type constructor). With T as defined above, (2) and (3) are fulfilled. Thus, for example T 
[] is propagating and therefore also T (T []). Now define 
 
:: T2 a = C2 (a -> Int) 


The T T2 is not propagating. 


The adjusted uniqueness propagation rule (see also...) becomes: 


- Let σ,τ be two uniqueness types. Suppose σ has attribute u. Then, if τ is propagating the application (τ σ) should 
have an attribute v such that v ≤ u. 


Some of the readers might have inferred that this propagation rule is a ‘higher-order’ generalization of the old ‘first-order’ 
propagation rule. 


As to the sign classification, we restrict ourselves to the remark that that sign analysis used in CLEAN is adjusted in a 
similar way as described above for the propagation case. 


Example 
 
:: T m a = C ((m a) -> Int) 


The sign classification of T if (-,⊥). Here ⊥ denotes the fact the a is neither directly used on a positive nor on a negative 
position. The sign classification of m w.r.t. a is +. The partial type T [] has sign -, which e.g. implies that 
 
T [] Int ≤ T [] *Int 


The type T T2 (with T2 as defined on the previous page) has sign +, so 
 
T T2 Int ≥ T T2 *Int 


It will be clear that combining uniqueness typing with higher-order types is far from trivial: the description given above is 
complex and moreover incomplete. However explaining all the details of this combination is far beyond the scope of the 
reference manual. 


4.5.7 Destructive Updates using Uniqueness Typing 


So, it is allowed to update a uniquely typed function argument (*) destructively when the argument does not reappear in 
the function result. The question is: when does the compiler indeed make use of this possibility. 
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Destructive updates takes place in some predefined functions and operators which work on predefined data structures 
such arrays (&-operator) and files (writing to a file). Arrays and files are intended to be updated destructively and their 
use can have a big influence on the space and time behaviour of your application (a new node does not have to be clai-
med and filled, the garbage collector is invoked less often and the locality of memory references is increased). 


Performing destructive updates is only sensible when information is stored in nodes. Arguments of basic type (Int, 
Real, Char or Bool) are stored on the B-stack or in registers and it therefore does not make sense to make them 
unique. 


The CLEAN compiler also has an option to re-use user-defined unique data structures: the space being occupied by a 
function argument of unique type will under certain conditions be reused destructively to construct the function result 
when (part of) this result is of the same type. So, a more space and time efficient program can be obtained by turning 
heavily used data structures into unique data structures. This is not just a matter of changing the uniqueness type 
attributes (like turning a lazy data structure into a strict one). A unique data structure also has to be used in a “single 
threaded” way (see Chapter 4). This means that one might have to restructure parts of the program to maintain the 
unicity of objects. 


The compiler will do compile-time garbage collection for user defined unique data-structures only in certain cases. In that 
case run-time garbage collection time is reduced. It might even drop to zero. It also possible that you gain even more 
then just garbage collection time due to better cache behaviour. 







 


 


 


  Chapter 5 


 Annotations and Directives  
5.1 Defining Partially Strict Data Structures and Func-


tions 


5.2 Defining Graphs on the Global Level 


5.3 Defining Macros 


5.4 Process Annotations 


5.5 Efficiency Tips 


Programming in a functional language means that one should focus on algorithms and without worrying about all kinds of 
efficiency details. However, when large applications are being written it may happen that this attitude results in a 
program which is unacceptably inefficient in time and/or space.  


In this Chapter we explain several kinds of annotations and directives which can be defined in CLEAN. These 
annotations and directives are designed to give the programmer some means to influence the time and space behaviour 
of CLEAN applications. 


CLEAN is by default a lazy language: applications will only be evaluated when their results are needed for the final 
outcome of  the program. However, lazy evaluation is in general not very efficient. It is much more efficient to compute 
function arguments in advance (strict evaluation) when it is known  that the arguments will be used in the function body. 
By using strictness annotations in type definitions the evaluation order of data structures and functions can be changed 
from lazy to strict. This is explained in Section 5.1. 


One can define constant graphs on the global level also known as Constant Applicative Forms (see Section 5.2). Unlike 
constant functions, these constant graphs are shared such that they are computed only one. This generally reduces 
execution time possibly at the cost of some heap space needed to remember the shared graph constants. 


Macro's (Section 5.3) are special functions which will already be substituted (evaluated) at compile-time. This generally 
reduces execution time (the work has already be done by the compiler) but it will lead to an increase of object code. 


By using process annotations (See 5.4) one can express that a CLEAN expressionmay be evaluated in parallel. This can 
be used to speed-up CLEAN applications or be used to develop distributed applications.  


5.1 Annotations to Change Lazy Evaluation into Strict Evaluation 


CLEAN uses by default a lazy evaluation  strategy: a redex is only evaluated when it is needed to compute the final 
result. Some functional languages (e.g. ML, Harper et al.) use a eager (strict) evaluation strategy and always evaluate all 
function arguments in advance. 


5.1.1 Advantages and Disadvantages of Lazy versus Strict Evaluation 


Lazy evaluation has the following advantages (+) / disadvantages (-) over eager (strict) evaluation: 
+ only those computations which contribute to the final result are computed (for some algorithms this is a clear 


advantage while it generally gives a greater expressive freedom); 
+ one can work with infinite data structures (e.g. [1..]); 
- it is unknown when a lazy expression will be computed (disadvantage for debugging, for controlling evaluation 


order); 
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- strict evaluation is in general much more efficient, in particular for objects of basic types, non-recursive types and 
tuples and records which are composed of such types; 


-/+ in general a strict expression (e.g. 2 + 3 + 4) takes less space than a lazy one, however, sometimes the other 
way around (e.g. [1..1000]); 


5.1.2 Strict and Lazy Context 


Each expression in a function definition is considered to be either strict (appearing in a strict context : it has to be 
evaluated to strong root normal form) or lazy (appearing in a lazy context : not yet to be evaluated to strong root normal 
form)  The following rules specify whether or not a particular expression is lazy or strict: 
+ a non-variable pattern is strict; 
+ an expression in a guard is strict; 
+ the expressions specified in a strict let expression or strict let-before expression are strict; 
+ the root expression is strict; 
+ the arguments of a function or data constructor in a strict context are strict when these arguments are being an-


notated as strict in the type definition of that function (manually or automatically) or in the type definition of the data 
constructor; 


+ all the other expressions are lazy. 


Evaluation of a function will happen in the following order: patterns, guard, expressions in a strict let (before) expression, 
root expression (see also 3.1 and 4.5.4). 


5.1.3 Space Consumption in Strict and Lazy Context 


The space occupied by CLEAN structures depend on the kind of structures one is using, but also depends on whether 
these data structures appear in a strict or in a lazy context. To understand this one has to have some knowledge about 
the basic implementation of CLEAN (see Plasmeijer and Van Eekelen, 1993). 


Graphs (see Chapter 1) are stored in a piece of memory called the heap. The amount of heap space needed highly 
depends on the kind of data structures which are in use. Graph structures which are created in a lazy context can occupy 
more space than graphs created in a strict context. Graphs which are not being used are automatically collected by the 
garbage collector in the run-time system of CLEAN. The arguments of functions being evaluated are stored on a stack. 
There are two stacks: the A-stack which contains references to graph nodes stored in the heap and the BC-stack which 
contains arguments of basic type and return addresses. Data structures in a lazy context are passed via references on 
the A-stack. Data structures of the basic types (Int, Real, Char or Bool) in a strict context are stored on the B-stack 
or in registers. This is also the case for these strict basic types when they are part of a record or tuple in a strict context.  


Data structures living on the B-stack are passed unboxed. They consume less space (because they are not part of a 
node) and can be treated much more efficiently. When a function is called in a lazy context its data structures are passed 
in a graph node (boxed)  The amount of space occupied is also depending on the arity of the function. 


In the table below the amount of space consumed in the different situations is summarised (for the lazy as well as for the 
strict context). For the size of the elements one can take the size consumed in a strict context. 


 


Type Arity Lazy context (bytes) Strict context (bytes) Comment 


Int, Bool - 8 4  


Int (0•n•32), Char - - 4 node is shared 


Real - 12 8  


Small Record n 4  + Σ size elements Σ size elements total length≤12 


Large Record n 8  + Σ size elements Σ size elements  


Tuple 2 12 Σ size elements  


 >2 8  + 4*n Σ size elements  


{a} n 20 + 4*n 12 + 4*n  


 !Int n 20 + 4*n 12 + 4*n  
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 !Bool,!Char n 20 + 4*ciel(n/4) 12 + 4*ciel(n/4)  


 !Real n 20 + 8*n 12 + 8*n  


 !Tuple, !Record n 20 + size rec/tup*n 12 + size rec/tup*n  


Hnf 0 - 4 + size node node is shared 


 1 8 4 + size node  


  2 12 4 + size node also for [a] 


 >2 8  + 4*n 4 + size node  


Pointer to node - 4 4  


Function 0,1,2 12 -  


 >3 4  + 4*n -  


 


5.1.4 Time Consumption in Strict and Lazy Context 


Strict arguments of functions can sometimes be handled much more efficiently than lazy arguments, in particular 
whenthe arguments are of basic type.  
 
Example: functions with strict arguments of basic type are more efficient. 
 
Ackerman:: !Int !Int -> Int 
Ackerman 0 j = j+1 
Ackerman i 0 = Ackerman (i-1) 1 
Ackerman i j = Ackerman (i-1) (Ackerman i (j-1)) 
 
The computation of a lazy version of Ackerman 3 7 takes 14.8 seconds + 0.1 seconds for garbage collection on an old 
fashion MacII (5Mb heap). When both arguments are annotated as strict (which in this case wll be done automatically by 
the compiler) the computation will only take 1.5 seconds + 0.0 seconds garbage collection. The gain is one order of 
magnitude. Instead of rewriting graphs the calculation is performed using stacks and registers where possible. The 
speed is comparable with a recursive call in highly optimised C or with the speed obtainable when the function was pro-
grammed directly in assembly. 


5.1.5 Changing Lazy into Strict Evaluation 


So, lazy evaluation gives a notational freedom (no worrying about what is computed when) but it might cost space as 
well as time. In CLEAN the default lazy evaluation can therefore be turned into eager evaluation by adding strictness 
annotations to types. 
 
Strict = ! 


This can be done in several ways: 
+ The CLEAN compiler has a built-in strictness analyser based on abstract reduction (Nöcker, 1993) (it can be 


optionally turned off). The analyser searches for strict arguments of a function and annotate them internally as strict 
(see 5.1.1). In this way lazy arguments are automatically turned into strict ones. This optimisation does not 
influence the termination behaviour of the program. It appears that the analyser can find much information. The 
analysis itself is quite fast. 


+ The strictness analyser cannot find all strict arguments. Therefore one can also manually annotate a function as 
being strict in a certain argument or in its result (see 5.1.1).  


+ By using strictness annotations, a programmer can define (partially) strict data structures (Nöcker and Smetsers, 
1993; see 5.1.3). Whenever such a data structure occurs in a strict context (see 5.1.1), its strict components will be 
evaluated. 


+ The order of evaluation of expressions in a function body can also be changed from lazy to strict by using a strict 
let expression or a strict let-before expression (see 3.4.11). 


One has to be careful though. When a programmer manually changes lazy evaluation into strict evaluation, the 
termination behaviour of the program might change. It is only safe to put strictness annotations in the case that the func-
tion or data constructor is known to be strict in the corresponding argument which means that the evaluation of that argu-
ment in advance does not change the termination behaviour of the program. The compiler is not able to check this. 
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Functions with Strict Arguments 


In the type definition of a function the arguments can optionally be annotated as being strict.  
 
FunctionType = [{[Strict] BrackType}+ ->] Type [ClassContext] [UnqTypeUnEqualities] 


In reasoning about functions it will always be true that the corresponding arguments will be in strong root normal form 
(see 2.1) before the rewriting of the function takes place. 
 
Example of a function with strict annotated arguments. 
 
Acker:: !Int !Int -> Int 
Acker 0 j = inc j 
Acker i 0 = Acker (dec i) 1 
Acker i j = Acker (dec i) (Acker i (dec j)) 


The CLEAN compiler includes a fast and clever strictness analyser which is based on abstract reduction (Nöcker, 1993). 
The compiler can derive the strictness of the function arguments in many cases, such as for the example above. 
Therefore there is generally no need to add strictness annotations to the type of a function by hand. When a function is 
exported from a module (see Chapter 2), its type has to be specified in the definition module. To obtain optimal 
efficiency, the programmer should also include the strictness information to the type definition in the definition module. 
One can ask the compiler to print out the types with the derived strictness information and paste this into the definition 
module. 


Notice that strictness annotations are only allowed at the outermost level of the argument type. Strictness annotations 
inside type instances of arguments are not possible (with exceptionfor some predefined types). Any (part of) a data 
structure can be changed from lazy to strict, but this has to be specified in the type definition (see 5.1.3).   


Strictness Annotations in Type Definitions 


Functional programs will generally run much more efficient when strict data structures are being used instead of lazy 
ones. If the inefficiency of your program becomes problematic one can think of changing lazy data structures into strict 
ones. This has to be done by hand in the definitionof the type.  
 
AlgebraicTypeDef = ::TypeLhs =  [QuantifiedVariables :] ConstructorDef {|ConstructorDef} ; 
RecordTypeDef = ::TypeLhs =  [QuantifiedVariables :] {{FieldName :: [Strict] Type}-list}; 
ConstructorDef = ConstructorName {[Strict] BrackType} 
 | (ConstructorName) [Fix][Prec] {[Strict] BrackType} 


In the type definition of a constructor (in an algebraic data type definition or in a the definition of a record type) the 
arguments of the data constructor can optionally be annotated as being strict. So, some arguments can be defined strict 
while others can be defined as being lazy. In reasoning about objects of such a type it will always be true that the 
annotated argument will be in strong root normal form when the object is examined. Whenever a new object is created in 
a strict context, the compiler will take care of the evaluation of the strict annotated arguments. When the new object is 
created in a lazy context, the compiler will insert code that will take care of the evaluation whenever the object is put into 
a strict context. If one makes a data structure strict in a certain argument, it is better not define infinite instances of such 
a data structure to avoid non-termination.  


So, in a type definition one can define a data constructor to be strict in zero or more of its arguments. Strictness is a 
property of data structure which is specified in its type. In general (with the exceptions of tuples) one cannot arbitrary mix 
strict and non-strict data structures because they are considered to be of different type.  
 
Example of a complex number as record type with strict components. 
 
::Complex = { re:: !Real, 
     im:: !Real } 
 
(+) infixl 6:: !Complex !Complex -> Complex 
(+) {re=r1,im=i1} {re=r2,im=i2} = {re=r1+r2,im=i1+i2} 


When a strict annotated argument is put in a strict context while the argument is defined in terms of another strict 
annotated data structure the latter is put in a strict context as well and therefore also evaluated. So, one can change the 
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default lazy semantics  of CLEAN into a (hyper) strict semantics  as demanded. The type system will check the consis-
tency of types and ensure that the specified strictness is maintained  


 Strictness Annotations on Instances of Predefined Type 


Functions arguments can be annotated as being strict (by hand or automatically, see 5.1.2), new types can be defined as 
(partially) being strict (see 5.1.3). How about function arguments of predefined type (see 4.1)?  


It is important to understand that in CLEAN a data structure with strict components is considered to be of different type 
than the same data structure with lazy components. For user defined data structures this does not cause any conflicts 
because the strictness of any instance obeys the strictness properties as specified in the corresponding type definition. 


Function arguments of basic type or predefined abstract type do not contain any (known) substructure and can easily 
and can without problems be made strict just by annotating the corresponding function argument as being strict. Things 
are much more complicated for lists, tuples and arrays which do contain substructure. How can we change the strictness 
properties of these substructure since we do not have access to the definition of the predefined type? Well, strictness 
has to be specified in the type instances instead of the type definition. But, strict versions are of differentype than lazy 
ones. To be able to handle these similar data structures of different type in a uniform way, some conversion has to take 
place. In the current version of CLEAN strict/lazy version of lists, tuples and arrays are all treated differently (we are 
working on it). 


 Strictness Annotations on Tuple Instances 


Strictness annotation can be put on any tuple element of any tuple instance (see also 3.4.6).  
 
TupleType  = ([Strict] Type,{[Strict] Type}-list) 


One can turn a lazy tuple element into a strict one by putting strictness annotations in the corresponding type instance on 
the tuple elements that one would like to make strict. When the corresponding tuple is put into a strict context the tuple 
and the strict annotated tuple elements will be evaluated. As usual one has to take care that these elements do not 
represent an infinite computation.  


Strict and lazy tuples are regarded to be of different type. However, unlike is the case with any other data structure, the 
compiler will automatically convert strict tuples into lazy ones, and the other way around. This is done for programming 
convenience. Due to the complexity of this automatic transformation, the conversion is done for tuples only! For the 
programmer it means that he can freely tuples with strict and lazy tuple elements. The type system will not complain 
when a strict tuple is offered while a lazy tuple is required. The compiler will automatically insert code to convert non-
strict tuple elements into a strict version and backwards whenever this is needed.  
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Example of a complex number as tuple type with strict components. 
 
::Complex :== (!Real,!Real) 
 
(+) infixl 6:: !Complex !Complex -> Complex 
(+) (r1,i1) (r2,i2) = (r1+r2,i1+i2) 
 
which is equivalent to 
 
(+) infixl 6:: !(!Real,!Real) !(!Real,!Real) -> (!Real,!Real) 
(+) (r1,i1) (r2,i2) = (r1+r2,i1+i2) 
 
when for instance G is defined as 
 
G:: Int -> (Real,Real) 
 
than the following application is approved by the type system: 
 
Start = G 1 + G 2 


 Strictness Annotations on Array Instances 


For reasons of efficiency there are different types of arrays predefined.  
 
ArrayType = {[Strict] Type} 
 | {#BasicType} 


One can define a lazy array (default, of type {a}), a strict array (explicitly type the array as {!a}), and an unboxed one 
(explicitly type the array as {#a}, works only on elements of basic value). When put in a strict context, all the elements 
of a strict array will be evaluated automatically. As usual one has to take care that the elements do not represent an 
infinite computation.  


Lazy, strict and unboxed arrays are regarded to be of different type even if the array elements are of the same type. So, 
in principle one cannot offer e.g. a strict array to a function demanding a lazy one, and the other way around. Both will 
give rise to a type error. However, by using the overloading mechanism one can define functions which work on any kind 
of array (see 3.4.8).  
 
Example of strict and non-strict arrays. ArrayA is a strict one and ArrayB is a lazy one. The function Scale expects a 
lazy one and can therefore only be applied on a lazy array. ArrayA is accepted but ArrayB is not accepted as 
argument of Scale. If one wants to define a function which works on any kind of array of Reals, one has to define an 
overloaded function (see 4.4) like Scale2. 
 
ArrayA:: {Real} 
ArrayA = {1.0,2.0,3.0} 
 
ArrayB:: {!Real} 
ArrayB = {1.0,2.0,3.0} 
 
Scale:: {Real} Real ->.{Real} 
Scale lazy_array factor = {factor * e \\ e <-: lazy_array} 
 
Scale2:: (a Real) Real ->.(a Real) | Array a 
Scale2 any_array factor = {factor * e \\ e <-: any_array} 


 Strictness Annotations on List Instances 


The current version of the CLEAN compiler does not allow to turn the standard lazy lists into strict ones by adding 
annotations in a type instance. In a future version this will change. 
 
ListType = [Type] 


So, if one wants to use a list with strict elements or a spine strict list one has to define a new list using an algebraic data 
type. This has as disadvantage that one cannot simply use the nice predefined notation for standrad lists (list 
comprehensions and the like). 
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user defined list with a strict elements). The list element will be evaluated when the Cons node is put in a strict context. 
 
::List a  = Cons !a (List a) 
   | Nil 
 
user defined spine strict list. 
 
::List2 a = Cons2 a !(List2 a) 
   | Nil2 


5.2 Defining Graphs on the Global Level 


Constant graphs can also be defined on a global level (for local constant graphs see 3.5.4). 
 
GraphDef = Selector =[:] GraphExpr ; 


A global graph definition defines a global constant (closed) graph, i.e. a graph which has the same scope as a global 
function definition (see 2.1). The selector variables that occur in the selectors of a global graph definition have a global 
scope just as globally defined functions. 


Special about global graphs (in contrast with local graphs) is that they are not garbage collected during the evaluation of 
the program  A global graph can be compared with a CAF (Constant Applicative Form): its value is computed at most 
once and remembered at run-time. A global graph can save execution-time at the cost of permanent space consumption. 


Syntactically the definition of a graph is distinguished from the definition of a function by the symbol which separates left-
hand side from right-hand side: "=:" is used for graphs while "=>" is used for functions. However, in general the more 
common symbol "=" is used for both type of definitions. Generally it is clear from the context what is meant (functions 
have parameters, selectors are also easy recognisible). However, when a simple constant is defined the syntax is 
ambiguous (it can be a constant function definition as well as a constant graph definition).  


To allow the use of the "=" whenever possible, the following rule is followed. Locally constant definitions are by default 
taken to be graph definitions and therefore shared, globally they are by default taken to be function definitions (see 3.1) 
and therefore recomputed. If one wants to obtain a different behaviour one has to explicit state the nature of the constant 
definition (has it to be shared or has it to be recomputed) by using "=:" (on the global level, meaning it is a constant 
graph which is shared) or "=>" (on the local level, meaning it is a constant function and has to be recomputed). 
 
Global constant graph versus global constant function definition: biglist1 is a graph which is computed only once, 
biglist3 and biglist2 is a constant function which is computed every time it is applied. 
 
biglist1 = [1..10000]    // a constant function (if defined globally) 
biglist2 =: [1..10000]    // a graph  
biglist3 => [1..10000]    // a constant function 


A graph saves execution-time at the cost of space consumption. A constant function saves space at the cost of 
execution time. So, use graphs when the computation is time-consuming while the space consumption is small and 
constant functions in the other case. 


5.3 Defining Macros 


Macros are functions (rewrite rules) which are applied at compile-time instead of at run-time. Macro's  can be used to 
define constants, create in-line substitutions, rename functions, do conditional compilation etc. With a macro definition 
one can, for instance, assign a name to a constant such that it can be used as pattern on the left-hand side of a function 
definition. 


At compile-time the right-hand side of the macro definition will be substituted for every application of the macro in the 
scope of the macro definition. This saves a function call and makes basic blocks larger (see Plasmeijer and Van Eeke-
len, 1993) such that better code can be generated. A disadvantage is that also more code will be generated. Inline 
substitution is also one of the regular optimisations performed by the CLEAN compiler. To avoid code explosion a 
compiler will generally not substitute big functions. Macros give the programmer a possibility to control the substitution 
process manually to get an optimal trade-off between the efficiency of code and the size of the code.  
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MacroDef = [MacroFixityDef] DefOfMacro 
MacroFixityDef = (FunctionName) [Fix][Prec] ; 
DefOfMacro = Function {Variable} :== FunctionBody; 
  [LocalFunctionAltDefs] 


The compile-time substitution process is guaranteed to terminate. To ensure this some restrictions are imposed on 
Macro's (compared to common functions). Only variables are allowed as formal argument. A macro rule always consists 
of a single alternative. Furthermore, 
• Macro definitions are not allowed to be cyclic to ensure that the substitution process terminates. 
 
Example of a macro definition. 
 
Black :== 1         // Macro definition 
White :== 0         // Macro definition 
 
:: Color :== Int         // Type synonym definition 
 
Invert:: Color -> Color       // Function definition 
Invert Black = White 
Invert White = Black 
 
Example: macro to write (a?b) for lists instead of [a:b] and its use in the function map. 
 
(?) infixr 5          // Fixity of Macro 
(?) h t :== [h:t]         // Macro definition of operator 
 
map:: (a -> b) [a] -> [b] 
map f (x?xs) = f x ? map f xs 
map f []  = [] 


Notice that macros can contain local function definitions. These local definitions (which can be recursive) will also be 
substituted inline. In this way complicated substitutions can be achieved resulting in efficient code.  
 
Example: macros can be used to speed up frequently used functions. See for instance the definition of the function 
foldl in StdList. 
 
foldl op r l :== foldl r l       // Macro definition 
where 
 foldl r []  = r 
 foldl r [a:x] = foldl (op r a) x 
 
sum list = foldl (+) 0 list 
 
After substitution of the macro foldl a very efficient function sum will be generated by the compiler: 
 
sum list = foldl 0 list 
where 
 foldl r []  = r 
 foldl r [a:x] = foldl ((+) r a) x 


The expansion of the macros takes place before type checking. Type specifications of macro rules is not possible. When 
operators are defined as macros, fixity and associativity can be defined. 


5.4 Process Annotations 


There are two ways of creating processes in CLEAN. 


One way is by creating interactive applications. These interactive "processes" actually consist of a collection of call-back 
functions which are applied automatically when certain events occur. The call-back functions are applied by the I/O 
system sequentially one after another. Hence, scheduling takes place by the I/O system on the level of call-back 
functions which perform a state transition in an indivisible action. Interactive processes are explained in Standard 
Libraries for CLEAN (Achten et al., 1997).  


In CONCURRENT CLEAN one can also create "real" processes which are executed interleaved in an undefined order or 
which are executed in parallel on a multi-processor architecture or on a network of processors. These CLEAN processes 
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are generally used to speed-up the program or to obtain a specific distribution of parts of the program across a network 
of processors (e.g. of the interactive processes !). Interleaved or parallel executing processes can be created by adding 
process annotations (Plasmeijer and van Eekelen, 1993) to function applications. The annotations only influence the 
order of evaluation, the program remains a pure functional program, no non-deterministic effects are introduced. The ori-
ginal semantics of the process annotations as explained in the CLEAN book are modified to be able to deal with 
uniqueness typing (Kesseler, 1995).  


The process annotations of CLEAN are designed to make parallel evaluation on loosely coupled parallel machine ar-
chitectures possible. A loosely coupled parallel architecture is defined as a multi-processor system which consists of a 
number of self-contained computers, i.e. sparsely connected processors each with private memory. An important 
property of such systems is that for each processor it is more efficient to access objects located in its own local memory 
than to use the communication medium to access remote objects. In order to achieve an efficient implementation it is 
necessary to map the computation graph to the physical processing elements in such a way that the communication 
overhead due to the exchanging of information is relatively small. Therefore, the graph to be rewritten has to be divided 
into a number of sub-graphs (grains) indicating the parts of the program graph that can be reduced in parallel. A real 
speed-up on parallel architectures can only be achieved if redexes that yield a sufficient large amount of computation, 
are evaluated in parallel while the intermediate links are sparsely used (coarse grain parallelism). 


CLEAN processes are lightweight processes which run very efficient. Time-slicing, scheduling and communication is con-
trolled by the CLEAN run-time system. Arbitrary process topologies can be created (e.g. cyclic process topologies) 
beyond the divide (fork) and conquer parallelism generally offered.  


The concurrency features of CLEAN (mail us for information) are currently only supported for a network of MacIntosh 
(Motorola 680x0). We are working on this. There is also a parallel version running on Transputers. See our internet 
pages. 


5.4.1 Process Creation 


If an application being evaluated contains an argument which is attributed with an process annotation ({*I*} or {*P*}) 
the corresponding argument will be evaluated by a new reduction process. This new reducer can run interleaved or in 
parallel with the original reduction process. The original process continues with the evaluation in the ordinary reduction 
order independently. The new reducer will evaluate the expression following the functional strategy until a normal form is 
reached. 


The creation of a new process will in theory not influence the termination behaviour of the program. It will influence the 
time and space consumption of the program which might cause run-time problems when resources are exhausted. 
 
Process = {* I *} 
 | {* P [at ProcIdExpr] *} 
ProcIdExpr = GraphExpr 


With the {*I*} annotation a new interleaved reducer is created on the same processor that reduces the annotated 
graph expression to normal form (following the functional strategy). Such an interleaved reducer dies when this normal 
form is reached. However, during the evaluation of this result other reducers may have been created. 


With the {*P*} annotation a new parallel reducer is created. This reducer is preferably located on a different processor 
working on a lazy copy of the corresponding sub-graph. Reducers that are located on different processors run in parallel 
with each other. The {*P*} annotations can be extended with a location directive at location, where location is an 
expression of predefined type ProcId indicating the processor on which the parallel process has to be created. In the 
library StdProcId functions are given that yield an object of this type. 


When there are several local annotations specified in a contractum, the order in which they have to be effectuated is in 
principle depth-first with respect to the sub-graph structure. 


5.4.2 Process Communication 


A reducer can demand the evaluation of a sub-graph located on another processor. Such a demand always takes place 
via a communication channel (a lazy copy node, see Plasmeijer and Van Eekelen, 1993).  
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- if the sub-graph the channel is referring to is not in strong root normal form, there will be a reducer process on the 
other processor (it will be already there or it will be created lazily) that will take care of the evaluation to root normal 
form. The demanding process is locked (suspended) until the root-normal form is reached. 


- if the sub-graph the channel is referring to is in strong root normal form, a lazy copy of this sub-graph is made on 
the processor such that it can be inspected by the demanding reducer. Only that part of the graph expression 
which is in strong root normal form is copied (in one or more chunks) to the demanding processor. Such a copy is 
an ordinary graph which can contain shared parts, it can be cyclic and it can refer to other parts of the graph stored 
on another processor. Those parts of the graph which are not in root normal form will not be copied. They are lazy 
copied in the same way (this might induce the creation of new lazy reduction processes) whenever there is a new 
demand for them. 


- a reducer will be locked (suspended) if it wants to reduce a redex that is already being reduced by some other 
reducer. A locked reducer can continue when the redex has been reduced to strong root normal form.  


So, process communication takes place automatically and there will always be a serving process that will reduce the 
demanding information to root normal form before it is shipped. 
 
Example of hierarchical process topology creation. 
 
fib:: Int -> Int 
fib 0 = 1 
fib 1 = 1 
fib n 
| n>threshold = fib (n-1) + {*P*} fib (n-2) 
| n>2   = fib (n-1) + fib (n-2) 
where 
 threshold = 10 
 
A pipeline of processes; the sieve of Eratosthenes is a classical example in which parallel sieving processes are created 
dynamically in a pipeline. 
 
Start:: [Int] 
Start = primes 
where 
 primes:: [Int] 
 primes = sieve {*P*} [2..] 
 
 sieve:: [Int] -> [Int] 
 sieve []   = [] 
 sieve [pr:str] = [pr:{*P*} sieve (filter pr str)] 
 
 filter:: Int [Int] -> [Int] 
 filter pr str = [n \\ n <- str | n mod pr <> 0] 


5.5 Efficiency Tips 


Here are some additional suggestions how to make your program more efficient: 
+ Use the CLEAN profiler to find out which frequently called functions are consuming a lot of space and/or time. If you 


modify your program, these functions are the one to have a good look at. 
+ Transform a recursive function to a tail-recursive function. 
+ Accumulate results in parameters instead of in right-hand side results. 
+ It is better to use records instead of tuples. 
+ Arrays can be more efficient than lists since they allow constant access time on their elements and can be 


destructive updated. 
+ When functions return multiple ad-hoc results in a tuple put these results in a strict tuple instead (can be indicated 


in the type). 
+ Use strict data structures whenever possible (see 5.1.5). 
+ Export the strictness information to other modules (the compiler will warn you if you don't). 
+ Make function strict in its arguments whenever possible (see 5.1.5) 
+ Use macros for simple constant expressions or frequently used functions. 
+ Use CAF's and local graphs to avoid recalculation of expressions. 
+ Selections in a lazy context can better be transformed to functions which do a pattern match. 
+ Higher order functions are nice but inefficient (the compiler will try to convert higher order function into first order 


functions). 
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+ Constructors of high arity are inefficient. 
+ Increase the heap space in the case that the garbage collector takes place to often. 
 
 











 


 


 


  Appendix A 


 Context-Free Syntax Description 
A.1 Clean Program 


A.2 Import Definition 


A.3 Function Definition 


A.4 Macro Definition 


A.5 Type Definition 


A.6 Class Definition 


A.7 Names 


A.8 Denotations 


In this appendix the context-free syntax of CLEAN is given. Notice that the lay-out rule (see 2.3.3) permits the omission of 
the semi-colon (';') which ends a definition and of the braces ('{' and '}') which are used to group a list of definitions. 


The following notational conventions are used in the context-free syntax descriptions: 
 
[notion]   means that the presence of notion is optional 
{notion}   means that notion can occur zero or more times 
{notion}+   means that notion occurs at least once 
{notion}-list   means one or more occurrences of notion separated by comma's 
terminals  are printed in 9 pts courier 
keywords   are printed in 9 pts courier 
terminals  that can be left out in lay-out mode are printed in 9 pts courier 
~    is used for concatenation of notions 
{notion}/ ~str   means the longest expression not containing the string str 


A.1 Clean Program 
 
CleanProgram = {Module}+ 
Module = DefinitionModule  
 | ImplementationModule 
DefinitionModule  = definition module ModuleName ; 
  {DefDefinition} 
 | system module ModuleName ; 
  {DefDefinition} 
ImplementationModule = [implementation] module ModuleName ; 
  {ImplDefinition} 
 
ImplDefinition = ImportDef           // see A.2 
 | FunctionDef           // see A.3 
 | GraphDef           // see A.3 
 | MacroDef           // see A.4 
 | TypeDef            // see A.5 
 | ClassDef            // see A.6 
 
DefDefinition = ImportDef           // see A.2 
 | FunctionTypeDef          // see A.3 
 | MacroDef           // see A.4 
 | TypeDef            // see A.5 
 | ClassDef            // see A.6 
 | TypeClassInstanceExportDef       // see A.6 


A.2 Import Definition 
 
ImportDef = ImplicitImportDef 
 | ExplicitImportDef 
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ImplicitImportDef = import {ModuleName}-list ; 
ExplicitImportDef = from ModuleName import {Imports}-list ;    // see A.7 
Imports = FunctionName          // see A.7 
 | ConstructorName          // see A.7 
 | SelectorVariable          // see A.7 
 | FieldName           // see A.7 
 | MacroName           // see A.7 
 | TypeName           // see A.7 
 | ClassName           // see A.7 


A.3 Function Definition 


 
FunctionDef = [FunctionTypeDef] DefOfFunction 
 
FunctionTypeDef = FunctionName :: FunctionType ; 
 | (FunctionName) [Fix][Prec] [:: FunctionType] ; 
FunctionType = [{[Strict] BrackType}+ ->] Type [ClassContext] [UnqTypeUnEqualities] 
ClassContext = | ClassName-list TypeVariable {& ClassName-list TypeVariable } 
UnqTypeUnEqualities = ,[{{UniqueTypeVariable}+ <= UniqueTypeVariable}-list] 
 
DefOfFunction = {FunctionAltDef}+ 
FunctionAltDef = Function {Pattern} 
  {LetBeforeExpression} 
  {{| Guard} =[>] FunctionBody}+ 
  [LocalFunctionAltDefs] 
 
Function = FunctionName 
 | (FunctionName) 
Pattern = [Variable =:] BrackPattern 
BrackPattern = (GraphPattern)   
 | Constructor  
 | PatternVariable 
 | BasicValuePattern 
 | ListPattern 
 | TuplePattern 
 | RecordPattern 
 | ArrayPattern 
 
GraphPattern = Constructor {Pattern} 
 | GraphPattern ConstructorName GraphPattern 
 | Pattern 
Constructor = ConstructorName          // see A.7 
 | (ConstructorName) 
 
PatternVariable = Variable 
 | _ 
 
BasicValuePattern = BasicValue 
BasicValue  = IntDenotation           // see A.8 
  | RealDenotation          // see A.8 
  | BoolDenotation          // see A.8 
  | CharDenotation          // see A.8 
 
ListPattern = [[{LGraphPattern}-list [: GraphPattern]]] 
LGraphPattern = GraphPattern 
 | CharsDenotation          // see A.8 
 
TuplePattern = (GraphPattern,{GraphPattern}-list) 
 
RecordPattern = {[TypeName |] {FieldName [= GraphPattern]}-list} 
 
ArrayPattern = {{GraphPattern}-list} 
 | {{ArrayIndex = Variable}-list} 
 | StringDenotation          // see A.8 
 
LetBeforeExpression = Lets {GraphDef}+ 
Lets = let | # | let! | #! 
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GraphDef = Selector =[:] GraphExpr ; 
Selector = BrackPattern 
 
Guard = BooleanExpr 
BooleanExpr = GraphExpr 
 
FunctionBody = [StrictLet] 
  RootExpression ;   
  [LocalFunctionDefs] 
 
StrictLet = let! { {GraphDef}+ } in 
 
RootExpression = GraphExpr 
 
GraphExpr = [Process] Application 
 
Process = {* I *} 
 | {* P [at ProcIdExpr] *} 
ProcIdExpr = GraphExpr 
 
Application = {BrackGraph}+ 
 | GraphExpr Operator GraphExpr 
Operator = FunctionName          // see A.7 
 | ConstructorName          // see A.7 
BrackGraph = (GraphExpr) 
 | ConstructorOrFunction 
 | GraphVariable 
 | BasicValue 
 | List 
 | Tuple 
 | Record 
 | RecordSelection 
 | Array 
 | ArraySelection 
 | LambdaAbstr 
 | CaseExpr 
 | LetExpr 
 
ConstructorOrFunction = Constructor 
 | Function 
 
GraphVariable = Variable            // see A.7 
 | SelectorVariable          // see A.7 
 
List = ListDenotation 
 | DotDotexpression 
 | ZF-expression 
ListDenotation = [[{LGraphExpr}-list [: GraphExpr]]] 
LGraphExpr = GraphExpr 
 | CharsDenotation          // see A.8 
DotDotexpression = [GraphExpr [,GraphExpr]..[GraphExpr]] 
ZF-expression = [GraphExpr \\ {Qualifier}-list] 
Qualifier = Generators {|Guard} 
Generators = {Generator}-list 
 | Generator {& Generator} 
Generator = Selector <- ListExpr 
 | Selector <-: ArrayExpr 
ListExpr = GraphExpr 
ArrayExpr = GraphExpr 
 
Tuple = (GraphExpr,{GraphExpr}-list) 
 
Record = RecordDenotation 
 | RecordUpdate 
RecordDenotation = {[TypeName|] {FieldName = GraphExpr}-list]} 
RecordUpdate = {[TypeName|][RecordExpr &][{FieldName {Selection} = GraphExpr}-list]} 
Selection = . FieldName 
 | . ArrayIndex 
RecordExpr = GraphExpr 
RecordSelection = RecordExpr  [. TypeName] . FieldName {Selection} 
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 | RecordExpr  [. TypeName] ! FieldName {Selection} 
ArrayExpr = GraphExpr 
 
Array = ArrayDenotation 
 | ArrayUpdate 
ArrayDenotation = {{GraphExpr}-list} 
 | StringDenotation          // see A.8 
ArrayUpdate = { ArrayExpr & [{ArrayIndex {Selection} = GraphExpr}-list] [\\ {Qualifier}-list]} 
 | {[ArrayExpr &] GraphExpr \\ {Qualifier}-list} 
ArraySelection = ArrayExpr. ArrayIndex {Selection} 
 | ArrayExpr! ArrayIndex {Selection} 
ArrayIndex = [{IntegerExpr}-list] 
IntegerExpr = GraphExpr 
 
LambdaAbstr = \ {Pattern} -> GraphExpr 
 
CaseExpr = case GraphExpr of 
  { {CaseAltDef}+ } 
 | if BrackGraph BrackGraph BrackGraph  
CaseAltDef = {Pattern} 
  {LetBeforeExpression} 
  {{| Guard} -> FunctionBody}+ 
  [LocalFunctionAltDefs] 
 
LetExpresssion = let { {LocalDef}+ } in GraphExpr 
 
LocalFunctionDefs = [with] { {LocalDef}+ } 
LocalDef = GraphDef 
 | FunctionDef 
LocalFunctionAltDefs = [where] { {LocalDef}+ } 


A.4 Macro Definition 


 
MacroDef = [MacroFixityDef] DefOfMacro 
MacroFixityDef = (FunctionName) [Fix][Prec] ; 
DefOfMacro = Function {Variable} :== FunctionBody; 
  [LocalFunctionAltDefs] 


A.5 Type Definition 
 
TypeDef = AlgebraicTypeDef 
 | RecordTypeDef 
 | SynonymTypeDef 
 | AbstractTypeDef 
 
AlgebraicTypeDef = ::TypeLhs =  [QuantifiedVariables :] ConstructorDef {|ConstructorDef} ; 
RecordTypeDef = ::TypeLhs =  [QuantifiedVariables :] {{FieldName :: [Strict] Type}-list}; 
SynonymTypeDef = ::TypeLhs :== [QuantifiedVariables :]Type ; 
AbstractTypeDef = ::TypeLhs ; 
 
TypeLhs = [*]TypeConstructor {[*] TypeVariable}  
TypeConstructor = TypeName           // see A.7 
 
QuantifiedVariables = {E. TypeVariable}+ 
 
ConstructorDef = ConstructorName {[Strict] BrackType} 
 | (ConstructorName) [Fix][Prec] {[Strict] BrackType} 
Fix = infixl 
 | infixr 
 | infix 
Prec = Digit             // see A.8 
Strict = ! 
 
Type = {BrackType}+ 
BrackType = [UnqTypeAttrib] SimpleType 
 
UnqTypeAttrib = * 
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 | UniqueTypeVariable:         // see A.7 
 | . 
 
SimpleType = TypeConstructor 
 | TypeVariable           // see A.7 
 | BasicType 
 | PredefAbstrType 
 | ListType 
 | TupleType 
 | ArrayType 
 | ArrowType 
 | (Type) 
 
TypeConstructor = TypeName 
 | [] 
 | ({,}+) 
 | {} 
 | {!} 
 | {#} 
 | (->) 
BasicType = Int 
 | Real 
 | Char 
 | Bool 
PredefAbstrType = World 
 | File 
 | ProcId 
ListType = [Type] 
TupleType  = ([Strict] Type,{[Strict] Type}-list) 
ArrayType = {[Strict] Type} 
 | {#BasicType} 
ArrowType = ({BrackType}+ -> Type) 


A.6 Class Definition 
 
ClassDef = TypeClassDef 
 | TypeClassInstanceDef 
 | TypeClassInstanceExportDef 
 
TypeClassDef = class  ClassName TypeVariable [ClassContext] 
  [[where] { {ClassMemberDef}+ }] 
 | class FunctionName TypeVariable :: FunctionType; 
 | class (FunctionName) [Fix][Prec] TypeVariable :: FunctionType; 
 
ClassMemberDef = FunctionTypeDef 
  [MacroDef] 
 
TypeClassInstanceDef = instance ClassName [BrackType [default] [ClassContext]] 
  [[where] {{DefOfFunction}+ }] 
 
TypeClassInstanceExportDef = export ClassName BasicType-list; 


A.7 Names 
 
ModuleName = LowerCaseId  | UpperCaseId  | FunnyId 
FunctionName = LowerCaseId  | UpperCaseId  | FunnyId 
ConstructorName =       UpperCaseId  | FunnyId 
SelectorVariable = LowerCaseId 
Variable = LowerCaseId 
MacroName = LowerCaseId  | UpperCaseId  | FunnyId 
FieldName = LowerCaseId 
TypeName =       UpperCaseId  | FunnyId 
TypeVariable = LowerCaseId 
UniqueTypeVariable = LowerCaseId 
ClassName = LowerCaseId  | UpperCaseId  | FunnyId 
 
LowerCaseId; = LowerCaseChar~{IdChar} 
UpperCaseId = UpperCaseChar~{IdChar} 
FunnyId = {SpecialChar}+ 
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LowerCaseChar = a | b | c | d | e | f | g | h | i | j 
 | k | l | m | n | o | p | q | r | s | t 
 | u | v | w | x | y | z 
UpperCaseChar = a | b | c | d | e | f | g | h | i | j 
 | k | l | m | n | o | p | q | r | s | t 
 | u | v | w | x | y | z 
SpecialChar = ~ | @ | # | $ | % | ^ | ? | !  
 | + | - | * | < | > | \ | / | | | & | = 
 | :  
IdChar = LowerCaseChar 
 | UpperCaseChar 
 | Digit            // see A.8 
 | _ | ` 


A.8 Denotations 
 
IntDenotation; = [Sign]~{Digit}+       // decimal number 
 | [Sign]~ 0~{OctDigit}+      // octal number 
 | [Sign]~ 0x~{HexDigit}+     // hexadecimal number 
Sign = + | - | ~ 
RealDenotation = [Sign~]{Digit~}+.{~Digit}+[~E[~Sign]{~Digit}+] 
BoolDenotation = True | False 
CharDenotation = CharDel~AnyChar/ ~CharDel~CharDel 
CharsDenotation = CharDel~{AnyChar/ ~CharDel}+~CharDel 
StringDenotation = StringDel~{AnyChar/ ~StringDel}~StringDel 
 
AnyChar = IdChar | ReservedChar | Special 
ReservedChar = ( | ) | { | } | [ | ] | ; | , | . 
Special = \n | \r  | \f | \b    // newline,return,formf,backspace 
 | \t | \\ | \CharDel    // tab,backslash,character delete 
 | \StringDel        // string delete 
 | \{OctDigit}+        // octal number 
 | \x{HexDigit}+       // hexadecimal number 
 
OctDigit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 
HexDigit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
 | A | B | C | D | E | F 
 | a | b | c | d | e | f 
 
CharDel = ' 
StringDel = " 







 


 


 


  Appendix B 


 Lexical Structure 
B.1 Lexical Program Structure 


B.2 Comments 


B.3 Reserved Keywords and Symbols 


 


In this appendix the lexical structure of CLEAN is given. It describes the kind of tokens recognised by the scanner/parser. 
In particular it summarizes the keywords, symbols and characters which have a special meaning in the language.  


B.1 Lexical Program Structure 


In this Section the lexical structure of CLEAN is given. It describes the kind of tokens recognised by the scanner/parser. 
In particular it summarizes the keywords, symbols and characters which have a special meaning in the language.  
 
LexProgram = { Lexeme | {Whitespace}+ } 
Lexeme = ReservedKeywordOrSymbol    // see Section B.3 
 | ReservedChar       // see Section A.8 
 | Literal   
 | Identifier 
Identifier = LowerCaseId        // see A.7 
 | UpperCaseId        // see A.7 
 | FunnyId         // see A.7 
Literal = IntDenotation        // see A.8 
 | RealDenotation       // see A.8 
 | BoolDenotation       // see A.8 
 | CharDenotation       // see A.8 
 | CharsDenotation       // see A.8 
 | StringDenotation       // see A.8 
 
Whitespace = space         // a space character 
 | tab          // a horizontal tab 
 | newline         // a newline char 
 | formfeed         // a formfeed 
 | verttab         // a vertical tab 
 | Comment        // see Section B.2 


B.2 Comments 
 
Comment = // AnythingTillNL newline 
 | /* AnythingTill/* Comment AnythingTill*/ */ // comments may be nested 
 | /* AnythingTill*/ */ 
AnythingTillNL = {AnyChar/ ~newline}      // no newline 
AnythingTill/* = {AnyChar/ ~/*}        // no "/*" 
AnythingTill*/ = {AnyChar/ ~*/}        // no "*/" 
AnyChar = IdChar | ReservedChar | Special   // see A.7 


B.3 Reserved Keywords and Symbols 


Below the keywords and symbols are listed which have a special meaning in the language. Some symbols only have a 
special meaning in a certain context. Outside this context they can be freely used if they are not a reerved character (see 
A.8). In the comment it is indicated for which context (name space) the symbol is predefined.  
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ReservedKeywordOrSymbol = 
 
// in all contexts: 
 
  /* // begin of comment block 
 | */ // end of comment block 
 | // // rest of line is comment 
 | :: // begin of a type definition 
 | :== // in a type synonym or macro definition 
 | = // in a function, graph, alg. type, rec. field 
 | =: // labeling a graph definition 
; | => // in a function definition 
 | ; // end of a definition (if no lay-out rule) 
 
// in global  definitions: 
 
 | from // begin of symbol list for imports 
 | definition // begin of definition module 
 | implementation  // begin of implementation module 
 | import // begin of import list 
 | module // in module header 
 | system // begin of system module 
 
// in function  definitions: 
 
 | -> // in a case expression, lambda abstraction  
 | [ // begin of a list 
 | : // cons node 
 | ] // end of a list 
 | \\ // begin of list or array comprehension 
 | <- // list gen. in list or array comprehension 
 | <-: // array gen. in list or array comprehension 
 | { // begin of a record or array, begin of a scope 
 | } // end of a record or array, end of a scope 
 | . // a record or array selector 
 | ! // a record or array selector (for unique objects) 
 | & // an update of a record or array, zipping gener.  
 | {* // begin of process annotations 
 | *} // end of process annotations 
 | case // begin of case expression 
 | code // begin code block in a syst impl. module 
 | if // begin of a conditional expression 
 | in // end of (strict) let expression 
 | let // begin of let expression 
 | # // begin of let expression (for a guard) 
 | let! // begin of strict let expression 
 | #! // begin of strict let expression (for a guard) 
 | of // in case expression 
 | where // begin of local def of a function alternative 
 | with // begin of local def in a rule alternative 
 
.i    // in process annotations: 
 
 | at // followed by processor id 
 | P // a parallel process to normal form 
 | I // an interleaved process to normal form 
 
// in type specifications: 
 
 | ! // strict type 
 | . // uniqueness type variable 
 | # // unboxed type 
 | * // unique type 
 | : // in a uniqueness type variable definition 
 | -> // function type constructor 
 | [] // list type constructor 
 | (,),(,,),(,,,),… // tuple type constructors 
 | {},{!},{#} // lazy, strict, unboxed array type constr. 
 | infix // infix indication in operator definition 
 | infixl // infix left indication in operator definition 
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 | infixr // infix right indication in operator definition 
 | Bool // type Boolean 
 | Char // type character 
 | File // type file 
 | Int // type integer 
 | ProcId // type process id 
 | Real // type real 
 | World // type world 
 
// in class  definitions: 
 
 | export // to reveal which class instances there are  
 | class // begin of type class definition 
 | default // to indicate default class instance 
 | instance // def of instance of a type class 
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 Index 
Emboldened terms indicate where a term has been defined in the text. A term starting with an uppercase character 
generally refers to an identifier in the syntactic description or to a predefined function or operator in the library. 
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\ · 29, 84 


A 


abort · 48 
abstract data type · 12, 46 


predefined · 40 
AbstractTypeDef · 46, 84 
actual node-id · 3 
algebraic data type · 41 
algebraic data type definition · 17 
AlgebraicTypeDef · 42, 59, 72, 84 
anonymous node variable · 17 
AnyChar · 22, 86, 87 
application · 21 
Application · 20, 83 
argument 


formal · 16 
arity of a function · 47 
array · 19, 21, 26, 41 


comprehension · 27 
generator · 23 
index · 27 
index · 41 
pattern · 19 
selection · 29 


Array · 26, 84 
ArrayDenotation · 26, 84 
ArrayExpr · 23, 27, 83, 84 
ArrayIndex · 29, 84 
ArrayPattern · 19, 82 
ArraySelection · 29, 84 
ArrayType · 41, 74, 85 


ArrayUpdate · 27, 84 
arrow type · 41 
ArrowType · 41, 85 
ASCII · 39 
at · 88 


B 


basic type · 18, 39 
BasicType · 40, 85 
BasicValue · 17, 21, 82 
BasicValuePattern · 17, 82 
block structure · 30 
Bool · 18, 21, 39, 40, 85, 89 
BoolDenotation · 22, 86 
BooleanExpr · 23, 83 
boxing · 70 
BrackGraph · 20, 83 
BrackPattern · 16, 82 
BrackType · 39, 43, 56, 59, 84 


C 


CAF · 75 
cartesian product · 41, 47 
case · 30, 84, 88 
case expression · 30 
CaseAltDef · 30, 84 
CaseExpr · 30, 84 
Char · 21, 39, 40, 85, 89 
Char · 18 
CharDel · 22, 86 
CharDenotation · 22, 86 
CharsDenotation · 22, 86 
class · 49, 53, 85, 89 


enumeration type · 23 







94 CLEAN LANGUAGE REPORT VERSION 1.3.1 


 


ClassContext · 50, 82 
ClassDef · 41, 85 
ClassMemberDef · 49, 85 
ClassName · 8, 85 
CleanProgram · 9, 81 
code · 14, 88 
Comment · 87 
conditional expression · 30 
console mode · 9 
constant 


global · 11 
local · 11 


Constant Applicative Form · 75 
constant function · 16 
constant value · 18, 41 
constructor 


of zero arity · 17 
Constructor · 17, 21, 82 
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