Learning Mealy Machines with Timers

Bengt Jonsson Frits Vaandrager

Uppsala University and Radboud University Nijmegen

IPA Fall Days, Nunspeet, November 2017
Goal active automaton learning

What's going on inside this black box?
Minimally adequate teacher (Angluin)

Learner

input sequences
MQ
output sequences
hypothesis
EQ
counterexample

Teacher

Jonsson and Vaandrager

Learning Mealy Machines with Timers
Black box checking (Peled, Vardi & Yannakakis)

Learner: Formulate hypotheses
Conformance Tester (CT): Test correctness hypotheses
Learning Mealy Machines with Timers

Jonsson and Vaandrager

Introduction
Mealy machines with timers
Untimed semantics
Learning algorithm
Conclusions and future work

LearnLib

LearnLib is a free, open-source (Apache License 2.0) Java library for active automata learning. It is mainly being developed at the Chair for Programming Systems at TU Dortmund University, Germany; a complete list of contributors can be found on the team page.

Note: The open-source LearnLib is a from-scratch re-implementation of the former closed-source version. See the features page for a comparison of the feature sets of the two versions.

Background

- Read some Papers on LearnLib
- Papers citing LearnLib at Google Scholar

Recent Posts
Open Source release of LearnLib
Research method
Research method

This talk: THEORY
This talk: THEORY (motivated by earlier applications)
Standard violations found in implementations of major protocols, e.g., TCP (CAV’16, FMICS’17), TLS (Usenix Security’15), SSH (Spin’17).
Bugs in protocol implementations

Standard violations found in implementations of major protocols, e.g., TCP (CAV’16, FMICS’17), TLS (Usenix Security’15), SSH (Spin’17). These findings led to several bug fixes in implementations.
Learned model for SSH implementation
SSH model checking results

<table>
<thead>
<tr>
<th>Property</th>
<th>Key word</th>
<th>OpenSSH</th>
<th>Bitvise</th>
<th>DropBear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security</td>
<td>Trans.</td>
<td>✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auth.</td>
<td>✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rekey</td>
<td>Pre-auth.</td>
<td>X ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auth.</td>
<td>✓ X ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funct.</td>
<td>Prop. 6</td>
<td>MUST ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prop. 7</td>
<td>MUST ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prop. 8</td>
<td>MUST X* ✓ X</td>
<td>✓ X ✓ ✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prop. 9</td>
<td>MUST ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prop. 10</td>
<td>MUST ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prop. 11</td>
<td>SHOULD X* X* ✓</td>
<td>✓ ✓ ✓ ✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prop. 12</td>
<td>MUST ✓ ✓ ✓</td>
<td>✓ ✓ X ✓</td>
<td></td>
</tr>
</tbody>
</table>
Learning Mealy Machines with Timers

For background and applications see CACM review article

Jonsson and Vaandrager
Timing behavior plays a crucial role in applications of model learning, but existing algorithms and tools cannot handle it. There is some work on algorithms for learning timed systems:

- Mens & Maler. Learning Regular Languages over Large Ordered Alphabets. LMCS, 2015.

but this is not so practical because of high complexity and/or limited expressivity.
Timing Behavior in Network Protocols

Sender alternating-bit protocol, adapted from Kurose & Ross, Computer Networking:

\[q_0 \xrightarrow{\text{start}} q_1 \xrightarrow{\text{timeout}} q_2 \xrightarrow{\text{in}} q_3 \xrightarrow{\text{timeout}} q_1 \]

- \(q_0 \): start
- \(q_1 \): start timer (3 sec)
- \(q_2 \): start timer (3 sec)
- \(q_3 \): start timer (3 sec)

Transitions:
- \(q_0 \xrightarrow{\text{in/send0}} q_1 \)
- \(q_1 \xrightarrow{\text{timeout/send0}} q_1 \)
- \(q_1 \xrightarrow{\text{start_timer(3sec)}} q_0 \)
- \(q_0 \xrightarrow{\text{ack1/void}} q_3 \)
- \(q_3 \xrightarrow{\text{timeout/send1}} q_3 \)
- \(q_3 \xrightarrow{\text{start_timer(3sec)}} q_0 \)
- \(q_2 \xrightarrow{\text{ack0/void}} q_2 \)
- \(q_2 \xrightarrow{\text{start_timer(3sec)}} q_1 \)
- \(q_1 \xrightarrow{\text{in/send1}} q_2 \)
- \(q_2 \xrightarrow{\text{start_timer(3sec)}} q_1 \)
Develop learning algorithm for Mealy machines with timers!!!
Develop learning algorithm for Mealy machines with timers!!!

Occurrence of timing dependent behavior fully determined by previous behavior
Assume an unbounded set X of timers x, x_1, x_2, etc. For a set I, write $\hat{I} = I \cup \{to[x] \mid x \in X\}$.

Definition

A **Mealy machine with timers (MMT)** is a tuple $M = (I, O, Q, q_0, \mathcal{X}, \delta, \lambda, \pi)$, where

- I and O are finite sets of input and output events
- Q is a finite set of states with $q_0 \in Q$ the initial state
- $\mathcal{X} : Q \to \mathcal{P}_{fin}(X)$, with $\mathcal{X}(q_0) = \emptyset$
- $\delta : Q \times \hat{I} \hookrightarrow Q$ is a transition function,
- $\lambda : Q \times \hat{I} \hookrightarrow O$ is an output function,
- $\pi : Q \times \hat{I} \hookrightarrow (X \hookrightarrow \mathbb{N}^{>0})$ is a timer update function

(satisfying some natural conditions)
Write $q \xrightarrow{i/o, \rho} q'$ if $\delta(q, i) = q'$, $\lambda(q, i) = o$ and $\pi(q, i) = \rho$. Basically, four things can happen:

1. If $x \in \mathcal{X}(q) \setminus \mathcal{X}(q')$ then input i stops timer x.
2. If $x \in \mathcal{X}(q') \setminus \mathcal{X}(q)$ then i starts timer x with value $\rho(x)$.
3. If $x \in \mathcal{X}(q) \cap \text{dom}($\scriptsize{\rho})$ then i restarts timer x with value $\rho(x)$.
4. Finally, if $x \in \mathcal{X}(q') \setminus \text{dom}($\scriptsize{\rho})$ then timer x is unaffected by i.
A configuration of an MMT is a pair (q, κ) of a state q and a valuation $\kappa : \mathcal{X}(q) \to \mathbb{R}^\geq 0$ of its timers. When time advances, all timers decrease at the same rate; a timeout occurs when value of some timer becomes 0.

A timed run of an MMT is a sequence

$$(q_0, \kappa_0) \xrightarrow{d_1} (q_0, \kappa'_0) \xrightarrow{i_1/o_1} (q_1, \kappa_1) \xrightarrow{d_2} \cdots \xrightarrow{i_k/o_k} (q_k, \kappa_k)$$

of configurations, nonzero delays, and discrete transitions.
Timed Semantics (2)

A timed word describes an observation we can make on an MMT:

\[w = d_1 i_1 o_1 d_2 i_2 o_2 \cdots d_k i_k o_k, \]

where \(d_j \in \mathbb{R}^>0, i_j \in I \cup \{ \text{to} \}, \) and \(o_j \in O. \)

To each timed run \(\alpha \) we associate a timed word \(tw(\alpha) \) by forgetting the configurations and names of timers in timeouts.

Definition

MMTs \(\mathcal{M} \) and \(\mathcal{N} \) are timed equivalent, denoted \(\mathcal{M} \approx_{\text{timed}} \mathcal{N} \), iff they have the same timed words.
"Uncontrollable" Nondeterminism

Accepts timed words $1\ i\ o\ 1\ \text{to}\ o'$ and $1\ i\ o\ 1\ \text{to}\ o''$.

\[
\begin{align*}
\text{start} & \rightarrow q_0 \\
q_0 & \rightarrow q_1 \quad i/o, \ x := 1, \ y := 1 \\
q_1 & \rightarrow q_3 \quad \text{to}[x]/o' \\
q_2 & \rightarrow q_1 \quad \text{to}[y]/o'' \\
q_3 & \rightarrow q_3 \\
\end{align*}
\]
"Uncontrollable" Nondeterminism

Accepts timed words $1 \ i \ o \ 1$ to o' and $1 \ i \ o \ 1$ to o''.

\Rightarrow We assume at most one timer can be updated per transition.
“Controllable” Nondeterminism

Accepts timed words $7i o 1 i o 1 to o'$ and $7i o 1 i o 1 to o''$.
“Controllable” Nondeterminism

Accepts timed words $7i o 1 i o 1 to o'$ and $7i o 1 i o 1 to o''$.

⇒ During learning we will simply avoid these race conditions.
A timed input word is a sequence $u = d_1 i_1 \cdots d_k i_k d_{k+1}$, with $d_j \in \mathbb{R}^{>0}$ and $i_j \in I$, for $j \leq k$, and $d_{k+1} \in \mathbb{R}^{\geq0}$. A timed (input) word is transparent if inputs occur at different fractional times.
A timed MAT framework

A timed input word is a sequence $u = d_1 i_1 \cdots d_k i_k d_{k+1}$, with $d_j \in \mathbb{R}^>0$ and $i_j \in I$, for $j \leq k$, and $d_{k+1} \in \mathbb{R}^\geq0$. A timed (input) word is transparent if inputs occur at different fractional times.

Main contribution: algorithm allowing learner to construct MMT \mathcal{N} that is timed equivalent to \mathcal{M} (under mild restrictions).

Jonsson and Vaandrager
Learning Mealy Machines with Timers
Plan of attack

1. Define untimed semantics
2. Prove equivalence with timed semantics
3. Define untimed MAT framework
4. Build untimed learner with LearnLib
5. Build untimed teacher with timed teacher
Timed and Untimed Runs and Behaviors

\[(q_0, \kappa_0) \xrightarrow{d_1} (q_0, \kappa'_0) \xrightarrow{i_1/o_1, \rho_1} (q_1, \kappa_1) \cdots (q_{k-1}, \kappa'_{k-1}) \xrightarrow{i_k/o_k, \rho_k} (q_k, \kappa_k)\]
Timed and Untimed Runs and Behaviors

Diagram commutes and has a pullback:

- Timed runs of \mathcal{M}
- Untimed runs of \mathcal{M}
- Timed behaviors
- Untimed behaviors
- Timed words

Diagram arrows:
- tw from timed runs to timed behaviors
- tw from timed behaviors to timed words
- $untw$ from untimed runs to untimed behaviors
- $untw$ from untimed behaviors to untimed words
- beh from timed runs to timed behaviors
- beh from untimed runs to untimed behaviors
Timed and Untimed Runs and Behaviors

Diagram commutes and has a pullback:

CAN WE DEFINE SEMANTICS MMTs IN TERMS OF UNTIMED BEHAVIORS??

Jonsson and Vaandrager Learning Mealy Machines with Timers
Feasibility

Definition

An untimed behavior

\[\beta = X_0 \xrightarrow{i_1/o_1,\rho_1} X_1 \xrightarrow{i_2/o_2,\rho_2} X_2 \ldots \xrightarrow{i_k/o_k,\rho_k} X_k \]

is feasible if there is a timed behavior \(\sigma \) such that \(\text{untime}(\sigma) = \beta \).

Example of untimed behavior that is not feasible:

\[\emptyset \xrightarrow{i_1/o_1,x:=1} \{x\} \xrightarrow{i_2/o_2,y:=100} \{x, y\} \xrightarrow{to[y]/o_3} \emptyset \]
An isomorphism between untimed behaviors β and β' is a consistent renaming of timers:

\[
\begin{align*}
\emptyset & \xrightarrow{i_1/o_1, x:=2} \{x\} & \xrightarrow{i_2/o_2, y:=1} \{x, y\} & \xrightarrow{to[y]/o_3, y:=100} \{x, y\} \\
\emptyset & \xrightarrow{i_1/o_1, x:=2} \{x_1\} & \xrightarrow{i_2/o_2, x_2:=1} \{x_1, x_2\} & \xrightarrow{to[x_2]/o_3, x_3:=100} \{x_1, x_3\}
\end{align*}
\]
An isomorphism between untimed behaviors β and β' is a consistent renaming of timers:

An untimed behavior is in canonical form if, for each j, the timer that is updated in the j-th event (if any) is equal to x_j. Each untimed behavior is isomorphic to a unique untimed behavior in canonical form.
Untimed semantics

Definition

MMTs \mathcal{M} and \mathcal{N} are **untimed equivalent**, $\mathcal{M} \approx_{\text{untimed}} \mathcal{N}$, iff their sets of feasible untimed behaviors are isomorphic.
Untimed semantics

Definition

MMTs \mathcal{M} and \mathcal{N} are **untimed equivalent**, $\mathcal{M} \approx_{\text{untimed}} \mathcal{N}$, iff their sets of feasible untimed behaviors are isomorphc.

Theorem

$\mathcal{M} \approx_{\text{untimed}} \mathcal{N}$ implies $\mathcal{M} \approx_{\text{timed}} \mathcal{N}$.
Untimed semantics

Definition

MMTs \mathcal{M} and \mathcal{N} are **untimed equivalent**, $\mathcal{M} \approx_{\text{untimed}} \mathcal{N}$, iff their sets of feasible untimed behaviors are isomorphic.

Theorem

$\mathcal{M} \approx_{\text{untimed}} \mathcal{N}$ implies $\mathcal{M} \approx_{\text{timed}} \mathcal{N}$.

Converse implication does not hold in general.
Ghost timers

![Diagram of ghost timers]

- Start at state q_0
- Transition to q_1 with inputs/outputs and $x := 1$
- Transition to q_2 with inputs/outputs and $y := 60$
- Transition to q_3 with $to[x]/o''$
- Transition to q_4 with $to[x]/o'$
Theorem

Suppose that \mathcal{M} and \mathcal{N} are MMTs without ghost timers in which at most one timer is started on each transition. Then $\mathcal{M} \approx_{\text{timed}} \mathcal{N}$ implies $\mathcal{M} \approx_{\text{untimed}} \mathcal{N}$.
Theorem

Suppose that \mathcal{M} and \mathcal{N} are MMTs without ghost timers in which at most one timer is started on each transition. Then $\mathcal{M} \approx_{\text{timed}} \mathcal{N}$ implies $\mathcal{M} \approx_{\text{untimed}} \mathcal{N}$.

Main proof technique: wiggling of timed behaviors to ensure that fractional starting times of different inputs are different.
An untimed input word is a sequence $u = i_1 \cdots i_k$ over \hat{I} such that $i_j = to[x_l]$ implies $l < j$, and each timer expires at most once.
Nerode congruence

Definition

Let \(S \) be a set of feasible untimed behaviors. Behaviors \(\beta, \beta' \in S \) are equivalent, notation \(\beta \equiv_S \beta' \), iff for any untimed behavior \(\gamma \), \(\beta \cdot \gamma \in S \iff \beta' \cdot \gamma \in S \).
Theorem

Let S be a set of feasible untimed behaviors over finite sets of inputs I and outputs O. Then S is the set of feasible untimed behaviors of an MMT \mathcal{M} iff

1. S is nonempty,
2. all behaviors in S start with the empty set of timers,
3. the set of timers that occur in S is finite,
4. S is prefix closed,
5. S is behavior deterministic,
6. S is input complete,
7. S is timeout complete, and
8. \equiv_S has only finitely many equivalence classes (finite index).
We assume learner knows bound n on the number of timers that can be active in a state. Adapter uses function $uncan$ to translate canonical behaviors to behaviors involving at most n clocks.
Building an untimed MMT teacher with a timed teacher

Untimed MMT teacher

Adapter

Timed Teacher

Lookahead Oracle

MQ

EQ

no or yes + timeout value

untimed input word $u + \text{index } j$
Query complexity

Number of queries polynomial in size canonical MMT \mathcal{N} produced by Myhill-Nerode construction.

This MMT may be exponentially bigger (in the number of clocks) than original MMT \mathcal{M} of the teacher (cf register automata).

For MMTs with single timer, learning is easy: all untimed behaviors are feasible, lookahead oracle is trivial if we assume learner knows bound on maximal timer value (just wait), and complexity is the same as for Mealy machine with the same size.
Conclusions

Our work constitutes a major step towards a practical approach for active learning of timed systems.

Just like timed automata paved the way to extend model checking to a timed setting, we expect that MMTs will make it possible to lift model learning to a timed setting.
Future Work

1. Implement equivalence oracle
2. Implement lookahead oracle (inspired by Tomte tool)
3. Handle non transparent counterexamples
4. Deal with timing uncertainty in real applications
5. Implement our algorithm and apply to practical case studies
6. Many theoretical questions left!