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Abstract. We explore an approach to model learning that is based on
using satisfiability modulo theories (SMT) solvers. To that end, we ex-
plain how DFAs, Mealy machines and register automata, and observa-
tions of their behavior can be encoded as logic formulas. An SMT solver
is then tasked with finding an assignment for such a formula, from which
we can extract an automaton of minimal size. We provide an implemen-
tation of this approach which we use to conduct experiments on a series
of benchmarks. These experiments address both the scalability of the
approach and its performance relative to existing active learning tools.

1 Introduction

We are interested in algorithms that construct black-box state diagram models
of software and hardware systems by observing their behavior and performing
experiments. Developing such algorithms is a fundamental research problem that
has been widely studied. Roughly speaking, two approaches have been pursued in
the literature: passive learning techniques, where models are constructed from
(sets of) runs of the system, and active learning techniques, that accomplish
their task by actively doing experiments on the system.

Gold [12] showed that the passive learning problem of finding a minimal
DFA that is compatible with a finite set of positive and negative examples, is
NP-hard. In spite of these hardness results, many DFA identification algorithms
have been developed over time, see [14] for an overview. Some of the most suc-
cessful approaches translate the DFA identification problem to well-known com-
putationally hard problems, such as SAT [13], vertex coloring [11], or SMT [19],
and then use existing solvers for those problems.

Angluin [5] presented an efficient algorithm for active learning a regular lan-
guage L, which assumes a minimally adequate teacher (MAT) that answers two
types of queries about L. With a membership query, the algorithm asks whether
or not a given word w is in L, and with an equivalence query it asks whether
or not the language LH of an hypothesized DFA H is equal to L. If LH and
L are different, a word in the symmetric difference of the two languages is re-
turned. Angluin’s algorithm has been successfully adapted for learning models
of real-world software and hardware systems [20,22,26], as shown in Figure 1. A
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Fig. 1. Model learning within the MAT framework.

membership query (MQ) is implemented by bringing the system under learning
(SUL) in its initial state and the observing the outputs generated in response to
a given input sequence, and an equivalence query (EQ) is approximated using a
conformance testing tool (CT) [18] via a finite number of test queries (TQ). If
these test queries do not reveal a difference in the behavior of an hypothesis H
and the SUL, then we assume the hypothesis model is correct.

Walkinshaw et al. [27] observed that from each passive learning algorithm
one can trivially construct an active learning algorithm that only poses equiv-
alence queries. Starting from the empty set of examples, the passive algorithm
constructs a first hypothesis H1 that is forwarded to the conformance tester.
The first counterexample w1 of the conformance tester is then used to construct
a second hypothesis H2. Next counterexamples w1 and w2 are used to construct
hypothesis H3, and so on, until no more counterexamples are found.

In this article, we compare the performance of existing active learning al-
gorithms with passive learning algorithms that are ‘activated’ via the trick of
Walkinshaw et al. [27]. At first, this may sound like a crazy thing to do: why
would one compare an efficient active learning algorithm, polynomial in the size
of the unknown state machine, with an algorithm that makes a possibly super-
polynomial number of calls [6] to a solver for an NP-hard problem? The main
reason is that in practical applications i/o interactions often take a significant
amount of time. In [23], for instance, a case study of an interventional X-ray
system is described in which a single i/o interaction may take several seconds.
Therefore, the main bottleneck in these applications is the total number of mem-
bership and test queries, rather than the time required to decide which queries to
perform. Also, in practical applications the state machines are often small, with
at most a few dozen states (see for instance [1, 4, 23]). Therefore, even though
passive learning algorithms do not scale well, there is hope that they can still
handle these applications. Active learning algorithms rely on asking a large num-
ber of membership queries to construct hypotheses. Passive learning algorithms
pose no membership queries, but instead need a larger number of equivalence
queries, which are then approximated using test queries. A priori, it is not clear
which approach performs best in terms of the total number of membership and
test queries needed to learn a model.
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Our experiments compare the original L∗ [5] and the state-of-the-art TTT
[16] active learning algorithm with an SMT-based passive learning algorithm on
a number of practical benchmarks. We encode the question whether there ex-
ists a state machine with n states that is consistent with a set of observations
into a logic formula, and then use the Z3 SMT solver [9] to decide whether this
formula is satisfiable. By iteratively incrementing the number of states we can
find a minimal state machine consistent with the observations. As equivalence
oracle we use a state-of-the-art conformance testing algorithm based on adap-
tive distinguishing sequences [17, 24]. In line with our expectations, the passive
learning approach is competitive with the active learning algorithms in terms of
the number of membership and test queries needed for learning.

An advantage of SMT encodings, when compared for instance with encodings
based on SAT or vertex coloring, is the expressivity of the underlying logic. In
recent years, much progress has been made in extending active learning algo-
rithms to richer classes of models, such as register automata [2, 8, 15] in which
data may be tested and stored in registers. We show that the problem of finding a
register automaton that is consistent with a set of observations can be expressed
as an SMT problem, and compare the performance of the resulting learning al-
gorithm with that of Tomte [2], a tool for active learning of register automata,
on some simple benchmarks. New algorithms for active learning of FSMs, Mealy
machines and various types of register automata are often extremely complex,
and building tools implementations often takes years [2, 8, 16]. Adapting these
tools to slighly different scenarios is typically a nightmare. One such scenario is
when the system is missing reset functionality. This renders most active learn-
ing tools impractical, as these rely on the ability to reset the system. Developing
SMT-based learning algorithms for register automata in settings with and with-
out resets only took us a few weeks. This shows that the SMT-approach can be
quite effective as a means for prototyping learning algorithms in various settings.

The rest of this paper is structured as follows. Section 2 describes how one
can encode the problem of learning a minimal consistent automaton in SMT.
The scalability and effectiveness of our approach, and its applicability in practice
are assessed in Section 3. Conclusions are presented in Section 4.

2 Model Learning as an SMT Problem

This section describes how to express the existence of an automaton A of at most
n states that is consistent with a set of observations S in a logic formula. If and
only if there exists an assignment to the variables of this formula that makes it
true, then exists an automaton A with at most n states that is consistent with S.
We use an SMT solver to find such an assignment. If the SMT solver concludes
that the formula is satisfiable, then its solution provides us with A.

We distinguish three types of constraints:

– axioms must be satisfied for A to behave as intended by its definition.
– observation constraints must be satisfied for A to be consistent with S.
– size constraints must be satisfied for A to have n states or less.
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Hence, the problem can be solved by iteratively incrementing n until the encod-
ing of the axioms, observation constraints and size constraints is satisfiable.

In the following subsections, we present encodings for deterministic finite au-
tomata (Section 2.1), register automata (Section 2.2), and input-output register
automata (Section 2.3). Not included here are encodings for Mealy and Moore
machines. These are available in the extended version of this work1.

2.1 An encoding for deterministic finite automata

A deterministic finite automaton (DFA) accepts and rejects strings, which are
sequences of labels. We define a DFA as follows.

Definition 1. A DFA is a tuple (L,Q, q0, δ, F ) comprising a finite, non-empty
set of labels L, a finite non-empty set of states Q, an initial state q0 ∈ Q, a
transition function δ : Q× L→ Q and a set of accepting states F ⊆ Q.

Let x be a string. We use xi to denote ith label of x. We use x[i,j] to denote
the substring of x starting at position i and ending at position j (inclusive), i.e.
x = x[1,|x|]. A DFA accepts a string x if its computation ends in an accepting
state, or more formally, if δ(q0, x) ∈ F where δ is extended to strings.

Let S+ be a set of strings that should be accepted, and let S− be a disjoint
set of strings that should be rejected. Let S be the set that contains all of
these strings, along with their labels, i.e. S = {(x, true) : x ∈ S+} ∪ {(x,
false) : x ∈ S−}. A DFA is consistent with S if it accepts all strings in S+, and
rejects all strings in S−.

In our DFA encoding, Q is a finite subset of the (non-negative) natural num-
bers N with q0 = 0, while F is encoded as a function λ : Q → B, such that
q ∈ F ⇐⇒ λ(q) = true.

Similarly to Heule et al. [13] and Bruynooghe et al. [7], we arrange elements
of S in an observation tree (OT) with the following definition:

Definition 2. An OT for S = {S+, S−} is a tuple (L,Q, λ), where L is a set
of labels, Q = {x ∈ L∗ : x is a prefix of a string in S+ ∪ S−}, λ : S+ ∪ S− → B
is a output function for the strings, with x ∈ S+ ⇐⇒ λ(x) = true.

An OT allows us to provide efficient encodings for the labeled strings in S.
Suppose an OT T = (L,QT , λT ) for a given set S = {S+, S−}. To find a DFA
A = (L,QA, q0, δ

A, F ) consistent with S, we define a surjective (i.e. many-to-
one) function map : QT → QA encoding correspondence between prefixes in the
OT and states in A. We then introduce the following observation constraints:

map(ε) = q0 (1)

∀xl ∈ QT : x ∈ L∗, l ∈ L δA(map(x), l) = map(xl) (2)

∀x ∈ S+ ∪ S− λA(map(x)) = λT (x) (3)

1 https://gitlab.science.ru.nl/rick/z3gi/blob/lata/resources/paper.pdf
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Equation 1 maps the empty string to the initial state of A. Equation 2 encodes
the observed prefixes as transitions of A while Equation 3 encodes the observed
outputs, with λA encoding F .

Lastly, we limit A to at most n states by the following size constraint:

∀q ∈ {0, . . . , n− 1} ∀l ∈ L
n−1∨
q′=0

δ(q, l) = q′ (4)

2.2 An encoding for register automata

A register automaton (RA) can be seen as an automaton that is extended with
a set of registers that can store data parameters. The values in these registers
can then be used to express conditions over the transitions of the automaton, or
guards. If the guard is satisfied the transition is fired, possibly storing the pro-
vided data parameter (this is called an assignment) and bringing the automaton
from the current location to the next. As such, an RA can be used to accept
or reject sequences of label-value pairs. Unlike finite automata, “states” in a
register automaton are called locations because the state of the automaton also
comprises the values of the registers. Therefore, an infinite number of possible
states can be modeled using a small number of locations and registers.

The RAs we define have the following restrictions. Transitions in an RA
do not imply (dis)equality of distinct registers (right invariance), values cannot
be moved from one register to another (non-swapping) and registers always
store unique values (unique-valued). The first two restrictions help simplify the
encoding while the third is necessary to avoid the non-determinism caused by two
used registers holding the same value. RAs with these restrictions can require
more locations to be consistent with a given set of action strings, than those
without. However, they are equally expressive. For a formal treatment of these
restrictions and their implications, we refer to [2].

We define an RA as follows.

Definition 3. An RA is a tuple (L,R,Q, q0, δ, λ, τ, π). Therein, L, Q, q0 and
λ are a set of labels, a set of locations, the start location, and a location output
function respectively. R is a finite set of registers. δ : Q× L× (R ∪ {r⊥})→ Q
is a register transition function. τ : Q×R→ B is a register use predicate, and
π : Q× L→ (R ∪ {r⊥}) is a register update function.

We call a label-value pair an action and denote it l(v) for input label l
and parameter v. We assume w.l.o.g. that parameter values are integers (Z).
A sequence of actions is called an action string , and is denoted by σ. A set
of observations S for an RA comprises a set of action strings that should be
accepted S+, and a set of action strings that should be rejected S−. An RA is
consistent with S = {S+, S−} if it accepts all action strings in S+, and rejects
all action strings in S−.

Roughly speaking, an RA can be described as a DFA (Definition 1) enriched
with a finite set of registers R and two additional functions. The first function,
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τ , specifies which registers are in use in a location. In a location q there can be
two types of transitions for a label l and parameter value v. If v is equal to some
used register r, then the transition δ(q, l, r) is taken. Else (v is different to all
used registers), the fresh transition δ(q, l, r⊥) is taken.

The second function, π, specifies if and where to store a value v when a fresh
transition (δ(q, l, r⊥)) is taken. If π(q, l) = r⊥ then the value v on transition
δ(q, l, r⊥) is not stored. Else (if π(q, l) = r for some register r ∈ R), the value v
on transition δ(q, l, r⊥) is stored in register r.

For the RA to behave as intended we introduce the following axioms. First,
we require that no registers are used in the initial location:

∀r ∈ R τ(q0, r) = false (5)

Second, if a register is used after a transition, it was used before or updated:

∀q ∈ Q ∀l ∈ L ∀r ∈ R ∀r′ ∈ (R ∪ {r⊥})
τ(δ(q, l, r′), r) = true =⇒ ( τ(q, r) = true ∨ (r′ = r⊥ ∧ π(q, l) = r) ) (6)

Third, if a register is updated, then it is used afterwards:

∀q ∈ Q ∀l ∈ L ∀r ∈ R π(q, l) = r =⇒ τ(δ(q, l, r⊥), r) = true (7)

Our goal is to learn an RA that is consistent with a set of action strings
S = {S+, S−}. For this, we need to define a function that keeps track of the
valuation of registers during runs over these action strings. Let A = (L,RA, QA,
q0, δ

A, λA, τA, πA) be an RA, and let T = (L × Z, QT , λT ) be an OT for S. In
addition to the map function (map : QT → QA), we define a valuation function
val : QT × RA → Z that maps a state of T and a register of A to the value the
register contains in that state.

Before constructing constraints for action strings, we first canonize them by
making them neat [2, Definition 7]. An action string is neat if each parameter
value is equal to either a previous value, or to the largest preceding value plus
one. To exemplify, let a be an input label, and let a(3)a(1)a(3)a(45) be an
action string, then a(0)a(1)a(0)a(2) is its corresponding neat action string. Aarts
et al. [3] show that an RA can be learned by just studying its neat action strings.

Observation constraints for an RA are constructed as follows. First, we map
the empty string to the initial location of A (Equation 1). Second, we assert that
a register is updated if and only if its valuation changes:

∀σl(v) ∈ QT ∀r ∈ RA val(σl(v), r) 6= val(σ, r) ⇔ πA(map(σ), l) = r (8)

We proceed by formulating how a register’s valuation changes:

∀σl(v) ∈ QT ∀r ∈ RA

val(σl(v), r) =

v
if δA(map(σ), l, r⊥) = map(σl(v))
∧ π(map(σ), l) = r

val(σ, r) otherwise

(9)
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We then encode the observed transitions:

∀σl(v) ∈ QT

map(σl(v)) =

δA(map(σ), l, r)
if ∃!r ∈ R : τA(map(σ), r) = true

∧ val(σ, r) = v

δA(map(σ), l, r⊥) otherwise

(10)

Finally, we encode the observed outputs, which can be done in the same way as
for DFAs (see Equation 3).

The task for the SMT solver is to find a solution that is consistent with these
constraints. Obviously, we are interested in an RA with the minimal number of
locations and registers. The number of locations can be limited in the same way
as we limited states in DFAs (see Equation 4). The number of registers is defined
by the variables r that we quantify over in the presented equations. Therefore,
they can be limited as such. In our case, the number of registers is never higher
than the number of locations (because we can only update a single register
from each location). Hence, the learning problem can be solved by iteratively
incrementing the number of locations n, and for each n incrementing the number
of registers from 1 to n, until a satisfiable encoding is found.

2.3 An extension for input-output register automata

An input-output register automaton (IORA) is a register automaton transducer
that generates an output action (i.e. label and value) after each input action. As
in the RA-case, we restrict both input and output labels to a single parameter.
Input and output values may update registers. Input values may be tested for
(dis)equality with values in registers. Output values can be equal to the values
stored, or may be fresh. As such, an input-output register automaton can be
used for modeling software that produces parameterized outputs.

For a formal description of IORAs we refer to [3]. We define an IORA in
Definition 4. Again, in the interest of our encoding, our definition is very different
from that in [3]. Despite this, the semantics are similar.

Definition 4. An IORA is a tuple (I,O,R,Q, q0, δ, λ, τ, π, ω). Therein, I and O
are finite, disjoint sets of input and output labels. R, Q, q0, τ and π are the same
as for an RA (Definition 3). δ : (Q∪{q⊥})× (I ∪O)× (R∪{r⊥})→ (Q∪{q⊥})
is a register transition function with a sink location. λ : (Q ∪ {q⊥}) → B is a
location output function with a sink location while ω : Q→ B is a location type
function which returns true if a location is an input location, and false if it
is an output location.

A set of observations S for an IORA consists of action traces, which are pairs
(σI , σO) where σI ∈ (I × Z)

∗
is an input action string , and σO ∈ (O × Z)

∗
is an

output action string with |σI | = |σO|. An IORA is consistent with a set S if for
each pair (σI , σO) ∈ S it generates σO when provided with σI .
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Despite that semantically an IORA is a transducer, we define it as an RA
(Definition 3) which distinguishes between input and output labels, and which
defines an additional function ω for the location type. From an input location
transitions are allowed only for input actions. After an input action the IORA
reaches an output location, in which a single transition is allowed. This transition
determines the output action generated in response, and the input location the
IORA will transition to. Transitions that are not allowed lead to a designated
sink location, which is denoted q⊥.

Using this definition we incorporate the axioms defined for our RA encoding
(Equations 5–7) also in our IORA encoding. To these, we add the following
axioms for an IORA to behave as intended.

First, observe that we do not use λ as an output function for an IORA.
Instead, we use it to denote which locations are allowed. Hence, we require that
the sink location q⊥ is the only rejecting location:

∀q ∈ (Q ∪ {q⊥}) λ(q) =

{
false if q = q⊥

true otherwise
(11)

Second, we require that transitions do not lead to the sink location:

∀q ∈ Q ∀o ∈ O ∀r ∈ (R ∪ {r⊥}) ω(q) = true =⇒ δ(q, o, r) = q⊥ (12)

∀q ∈ Q ∀i ∈ I ∀r ∈ (R ∪ {r⊥}) ω(q) = false =⇒ δ(q, i, r) = q⊥ (13)

∀l ∈ I ∪O ∀r ∈ (R ∪ {r⊥}) δ(q⊥, l, r) = q⊥ (14)

Finally, we require that input locations are input enabled (Equation 15), and that
there is there is only one transition possible in an output location (Equation 16):

∀q ∈ Q ∀i ∈ I ∀r ∈ (R ∪ {r⊥}) ω(q) = true =⇒ δ(q, i, r) 6= q⊥ (15)

∀q ∈ Q ∃!o ∈ O ∃!r ∈ (R ∪ {r⊥}) ω(q) = false =⇒ δ(q, o, r) 6= q⊥ (16)

Our goal is to learn an IORA A = (I,O,RA, QA, q0, δ
A, λA, τA, πA, ωA) that

is consistent with a set of action traces S. Because of the nature of our encoding,
we consider each action trace σ = (σI , σO) in S as an interleaving of the input
action string σI and the output action string σO, i.e. σ = σI1σ

O
1 . . . σ

I
|σI |σ

O
|σI |.

Let T = ((I ∪O)× Z, QT , λT ) be an OT for such strings.
The constraints for an IORA can now be constructed in the same way as for

an RA (Equations 1 and 8–10). Observe that we do not use λ to encode observed
outputs (this is already done by encoding the transitions of the OT). Instead, λ
is used to denote which locations are allowed. All the locations in Q are allowed
(because we have observed them) and q⊥ is the only location that is not allowed
(λ(q⊥) = false by Equation 11). As such, we add the following constraint:

∀σ ∈ QT map(σ) 6= q⊥ (17)

We can now determine if there is an IORA with at most n locations and m
registers in the same way as for RAs.
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3 Implementation and Evaluation

We implemented our encodings using Z3Py, the Python front-end of Z3 [9]2. Our
tool can generate an automaton model from a given a set of observations (pas-
sive learning), or a reference to the system and a tester implementation (active
learning), also when this system cannot be reset. We have also implemented a
tester for the classes of automata supported. The tester generates test queries
(or tests), each test consisting of an access sequence to an arbitrary state in the
current hypothesis, and a sequence generated by a random walk from that state.
Ensuring validity of the learned models was done by running a large number of
tests on the last hypothesis and checking the number of states. We conducted a
series of experiments to assess the scalability and effectiveness of our approach.

Our first experiment assesses the scalability of our encodings by adapting the
scalable Login, FIFO set and Stack benchmarks of [2] to DFAs, Mealy machines,
RAs and IORAs. To generate tests, we used the testing algorithm described
earlier. The maximum length of the random sequence is 3 + size, where size is
the number of users or elements in the system. The solver timeout – the amount
of time the solver was provided to compute a solution or indicate its absence
– was set to 10 seconds for the DFA and Mealy systems, and to 10 minutes
for the RA and IORA systems whose constraints could take considerably longer
to process. Each learning run ends when either a solution is found (indicating
success), or when a maximum bound for n is reached (indicating failure). We
hence continue incrementing n even after encountering solver timeouts. By doing
so, we lose the minimality guarantee yet may learn larger systems. For each
system we performed 5 learning runs and collated the resulting statistics.

The results are shown in Table 1. Columns describe the system, the number
of successful learning runs, the number of states/locations (which may vary due
to loss of minimality) and registers (where applicable), average and standard
deviation for the number of tests and inputs used in learning except for validating
the last hypothesis, and for the amount of time learning took. The table only
includes entries for the largest systems we could learn. A table with entries for
all the systems learned is featured in the extended version of this work1.

As part of our second experiment we applied our tool on models learned in
three case-studies [1,4,23]. These models are Mealy machines detailing aspects of
the behavior of bankcard protocols, biometric passports and power control ser-
vices (PCS). We used the tester described in [24], which produces tests similar
to our own, but extended by distinguishing sequences. These tests are parame-
terized by both the length of the random sequence and a factor k. We set both
the length and the k factor to 1. The solver timeout is set to 1 minute.

We use this experiment to also draw comparison between our approach and
learners in the classical framework. To that end, to learn the case study mod-
els we also use the TTT [16] and classical L* [5] algorithms. Both of these
algorithms are provided by the LearnLib learning tool (v0.12.1) [22]. To draw
further comparison we additionally include scalable systems in this experiment.

2 See https://gitlab.science.ru.nl/rick/z3gi/tree/lata
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Table 1. Scalable experiments. The model name encodes the formalism, type and size.

Model succ states regs tests inputs time(sec)
loc avg std avg std avg std

DFA FIFOSet(8) 5 10.0 228.0 81.11 2156.0 832.02 76.28 42.49
DFA FIFOSet(9) 2 11.5 413.5 161.93 4194.0 2104.35 199.99 26.1
DFA Login(3) 5 11.0 446.0 100.18 3092.0 781.73 131.84 39.26
Mealy FIFOSet(11) 5 12.0 280.0 110.65 3694.0 1722.57 79.75 23.69
Mealy FIFOSet(12) 4 15.5 370.0 200.12 5021.0 3312.85 227.15 290.99
Mealy FIFOSet(13) 2 14.5 526.5 318.91 8021.5 5608.06 190.36 51.96
Mealy Login(3) 5 10.0 104.0 10.03 726.0 69.93 52.4 4.83
Mealy Login(4) 1 16.0 241.0 0.0 2094.0 0.0 370.19 0.0
RA Stack(1) 5 3.0 1 32.0 21.18 109.0 90.48 3.18 0.86
RA Stack(2) 5 5.0 2 202.0 71.88 1018.0 394.58 124.72 53.41
RA FIFOSet(1) 5 3.0 1 49.0 12.92 180.0 52.56 4.94 6.07
RA FIFOSet(2) 5 6.0 2 365.0 88.41 2025.0 578.33 333.09 334.12
RA Login(1) 5 4.0 1 306.0 163.18 1336.0 765.23 54.96 9.99
RA Login(2) 3 8.0 2 1606.0 345.22 9579.0 2163.67 6258.11 1179.27
IORA Stack(1) 5 7.0 1 7.0 1.58 24.0 6.63 8.77 1.92
IORA FIFOSet(1) 5 7.0 1 8.0 3.27 31.0 9.36 6.45 0.84
IORA Login(1) 5 9.0 1 33.0 6.65 152.0 29.89 1509.18 477.04

This allows us to compare the SMT-based approach with Tomte (v0.41) [2], a
state-of-the-art learning tool for register automata. We note that the test con-
figurations are similar for all learners. Due to the high standard deviation, we
ran 20 experiments for each benchmark.

Table 2 shows the results of this experiment. We include the alphabet size
and number of states/locations in the model, as well as the average time it
took for the SMT approach to learn (this statistic is not useful for the other
learners, which took at most a couple of seconds). We remark that the SMT-
based approach is able to successfully learn all models every time, though it
takes a long time for the larger ones. We also note that increasing the length of
the random sequence used in tests even by 1 meant the SMT-based approach
occasionally failed to infer the larger VISA model.

Analyzing Table 2, we remark that the SMT-based approach largely out-
performs L* and Tomte, while staying competitive with TTT. The approach
performs better on scalable systems than on the case study models. This can be
attributed to scalable systems requiring more counterexamples. To process these
counterexamples, active learning algorithms require additional queries. Perfor-
mance is further hindered if counterexamples are not optimal (e.g. they are
unnecessarily long). Such problems do not affect the SMT-based approach.

Our final experiment assesses our extension for learning systems without
resets using benchmarks from recent related work [21]. For the sake of space
we summarize results and refer the reader to the extended version1 for details.
Despite the simplicity of the test setup, the SMT-based approach performed only
slightly worse than the sophisticated SAT-based approach of [21].
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Table 2. Comparison with other learners

Model states alph SMT TTT L* Tomte
loc size tests inputs time tests inputs tests inputs tests inputs

Biometric Passport 6 9 220 1057 26 220 941 333 1143
MAESTRO 6 14 835 4375 359 860 4437 1190 4718
MasterCard 6 14 839 4379 353 996 5260 1190 4718
PIN 6 14 757 3945 338 911 4769 1190 4718
SecureCode 4 14 313 1485 90 194 682 798 2758
VISA 9 14 796 4770 2115 750 4094 2040 9015
PCS 1 8 9 629 3530 189 417 2179 657 2682
PCS 2 3 9 71 279 9 75 196 252 657
PCS 3 7 9 508 2651 154 476 2472 576 2196
PCS 4 7 9 559 3024 154 451 2297 576 2196
PCS 5 9 9 1120 6260 778 417 1753 1308 5340
PCS 6 9 9 1158 6442 704 457 1977 1308 5340
Mealy FIFOSet(2) 3 2 6 27 0 12 38 14 38
Mealy FIFOSet(7) 8 2 52 481 7 71 588 235 2494
Mealy FIFOSet(10) 11 2 179 2152 63 163 1822 486 6743
Mealy Login(2) 6 3 37 214 7 57 242 57 219
Mealy Login(3) 10 3 89 644 64 120 704 240 1720
IORA FIFOSet(1) 7 2 9 31 7 21 36.5
IORA Stack(1) 7 2 8.5 33 8 19 34
IORA Login(1) 9 3 33 152 849 157 580

4 Conclusions

We have experimented with an approach for model learning which uses SMT
solvers. The approach is highly versatile, as shown in its adaptations for learning
FSMs and register automata, and for learning without resets. We provide an
open source tool implementing these adaptations. Experiments indicate that
our approach is competitive with the state-of-the-art. While the approach does
not scale well, we have shown that it can be used for learning small models in
practice. In the future we wish to improve the scalability of the approach via
more efficient encodings. We hope this paper gives rise to a broader direction of
future work, since the presented approach has several advantages over traditional
model learning algorithms. Notably, it appears to be quite effective for rapid
prototyping of learning algorithms for new formalisms and settings.
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