
Model Checker Aided Design of a Controller for
a Wafer Scanner?

Martijn Hendriks1, Barend van den Nieuwelaar2??, and Frits Vaandrager1

1 Nijmegen Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands

{martijnh,fvaan}@cs.ru.nl,
2 Department of Mechanical Engineering

Eindhoven University of Technology, The Netherlands
N.J.M.v.d.Nieuwelaar@tue.nl

Abstract. For a case-study of a wafer scanner from the semiconduc-
tor industry it is shown how model checking techniques can be used to
compute (i) a simple yet optimal deadlock avoidance policy, and (ii) an
infinite schedule that optimizes throughput. Deadlock avoidance is stud-
ied based on a simple finite state model using Smv, and for throughput
analysis a more detailed timed automaton model has been constructed
and analyzed using the Uppaal tool. The Smv and Uppaal models are
formally related through the notion of a stuttering bisimulation. The
results were obtained within two weeks, which confirms once more that
model checking techniques may help to improve the design process of
realistic, industrial systems. Methodologically, the case study is interest-
ing since two models (and in fact also two model checkers) were used
to obtain results that could not have been obtained using only a single
model (tool).

1 Introduction

Scheduling and resource allocation problems occur in many different domains,
for instance (1) scheduling of production lines in factories to optimize costs and
delays, (2) scheduling of computer programs in (real-time) operating systems to
meet deadline constraints, (3) scheduling of micro instructions inside a proces-
sor with a bounded number of registers and processing units, (4) scheduling of
trains (or airplanes) over limited quantities of railway tracks and crossroads, and
(5) mission planning for autonomous robots on spacecrafts. Typically, in each of
these domain problems are solved using different approaches and mathematical
tools. The EU IST project Ametist (see http://ametist.cs.utwente.nl/) en-
visages a unifying framework for time-dependent behavior and dynamic resource
allocation that crosses the boundaries of application domains.

? Supported by the European Community Project IST-2001-35304 (Ametist).
?? Part-time software architect at ASML, Veldhoven, The Netherlands.

In the Ametist approach, components of a system are modeled as dynamical
systems with a state space and a well-defined dynamics. All that can happen
in a system is expressed in terms of behaviors that can be generated by the
dynamical systems; these constitute the semantics of the problem. Verification,
optimization, synthesis and other design activities explore and modify system
structure so that the resulting behaviors are correct, optimal, etc. Preferably,
the limitations of currently known computational solutions should not influence
modeling too much: only after the semantics of a problem is properly under-
stood, abstractions and specialization due to computational considerations can
intervene. In such situations, the soundness of abstractions should ideally also
be proved, either via deductive verification or model checking.

The mission of Ametist is to extend this approach, which underlies the suc-
cessful domain of formal verification, to resource allocation, scheduling and other
time-related problems. The mathematical carrier for the Ametist methodology
is the timed automaton model [2, 3], a modeling framework for discrete event
dynamical systems that can handle quantitative timing delays between events.
Some tools for model checking timed automata already exist, e.g., Kronos [22]
and Uppaal [13]. Model checking is a method for formally verifying dynamical
systems. Specifications about the system are expressed as temporal logic for-
mulas, and efficient symbolic algorithms are used to traverse the model and to
check (fully automatically) if the specification holds or not. We aim at further
improving model checking tools for timed automata, investigating the applica-
bility of these tools, and establishing links to tools developed in specific domains
whenever appropriate.

In this paper, as an illustration of the Ametist methodology, we use model
checking techniques to solve the deadlock avoidance and throughput optimiza-
tion problems for a realistic case of a wafer scanner from the semiconductor
industry.

A major concern in the design of controllers for many resource allocation
systems (RASs) is deadlock, a permanently blocking condition. There are three
general ways of handling deadlock: (i) deadlock prevention, (ii) deadlock detec-
tion and resolution, and (iii) deadlock avoidance. Deadlock prevention restricts
the system in such a way that deadlock is a priori impossible. As a consequence,
performance may be unnecessarily low. Deadlock detection and resolution, on
the other hand, is not restrictive at all and detects and resolves a deadlock at
run-time. This, however, may be very expensive. Deadlock avoidance achieves
a middle ground; it dynamically chooses the control actions to avoid the oc-
currence of deadlock. In this paper, we show how a least restrictive deadlock
avoidance policy (DAP) for the wafer scanner can be easily computed using
Smv, a model checker for finite automata. This DAP can be represented by a
very short predicate over the states of the wafer scanner, which can be used by
the controller for the wafer scanner.

In addition, we use the timed automaton tool Uppaal to define a refined
model that adds timing constraints to address the issue of throughput optimiza-
tion. We relate the Uppaal model to the Smv model via the concept of stuttering

bisimulation introduced by Browne, Clarke and Grumberg [5]. Since stuttering
bisimulation preserves validity of CTL formulas (without nexttime operator),
all properties (and in particular the DAP) that we established for the untimed
model using Smv, carry over to the Uppaal model. It is not possible to compute
the least restrictive DAP directly for the Uppaal model since (a) Uppaal does
not support full CTL, and (b) the state space of the Uppaal model is so big
that it cannot be fully explored. Using heuristics, however, we are able to use the
Uppaal model checker to to find an infinite schedule that optimizes throughput.

Contribution. We obtained our results within two weeks, and we believe that
our method can be applied by engineers with a background in computer science
after training of only a few days. This confirms that model checking may help
to improve the design process of realistic, industrial systems. Our DAP com-
putation approach is referred to in a patent application of ASML, which shows
its significance for industry. Methodologically, the case study is interesting since
two models (and in fact also two model checkers) were used in combination to
obtain results that could not have been obtained using only a single model (tool).
Our approach illustrates once more that building models that are just abstract
enough for addressing a specific question, often provides a way to deal with the
state space explosion problem. The Smv and Uppaal models are formally re-
lated through the notion of a stuttering bisimulation. We are not aware of other
work that addresses both deadlock avoidance and throughput optimization in
(what essentially is) a single framework.

Related work. Other papers in which model checking tools are used to solve
scheduling problems include a case study in which a control schedule for a smart
card personalization system is synthesized using the Smv model checker [10],
and a case study in which the Uppaal model checker is used to find feasible
schedules for a steel plant [9]. The present work is a follow-up on [4], which
considers the same example as the present paper and uses suboptimal deadlock
avoidance heuristics to generate schedules that are not guaranteed to be optimal.
The present work, however, gives a least restrictive (and thus optimal) DAP and
a schedule that optimizes stationary throughput in the absence of errors.

Much research has been devoted to deadlock avoidance in RASs, see for in-
stance [18, 19]. Discouraged by the NP-completeness of optimal deadlock avoid-
ance for many RAS classes, see for instance [14], this kind of work generally
focuses either on computation of suboptimal but polynomial DAPs or on opti-
mal policies for very specific sub classes. Much of this work uses the Petri net
formalism [17] for the modeling and analysis of RASs.

In [11] a deadlock free controller is constructed by an iterative process. The
parallel composition of the controller and the plant is checked against deadlock
by Smv. If a deadlock state is found, then the controller is adjusted to exclude
the counterexample and the verification is run again. Otherwise, the controller
is deadlock free. Finally, the work presented in [21] deals with verification of
several DAPs using Smv.

Outline. First, Section 2 informally presents the case study. Section 3 then
presents the Smv model and shows two ways of obtaining an optimal DAP us-

ing Smv. In Section 4, a Uppaal model of the wafer scanner is proposed and
infinite schedules which optimize throughput are computed. Finally, Section 5
draws some conclusions and gives directions for future work. A full version of
this article, which includes all the proofs, is available as [12]. The complete
Smv and Uppaal models used in our case study are available at the URL
http://www.cs.ru.nl/ita/publications/papers/martijnh/.

2 The EUV Machine

Lithographic machines, called wafer scanners, are used within the semiconduc-
tor industry to project chip designs on slices of silicon which are called wafers.
A key performance characteristic of wafer scanners is throughput, i.e., the num-
ber of wafers that can be processed per time unit. For a typical recipe1 it is
desirable that the exposure operation (which uses the lens which is the most ex-
pensive part of the machine) is critical in optimal schedules. In order to maximize
throughput, a controller should have a strategy that optimizes throughput in the
absence of errors. Furthermore, we require that the controller is deadlock-free,
since deadlock resolution is expensive.

Figure 1 schematically depicts a possible design of an Extreme Ultra Violet
machine (EUV machine), which is a particular type of wafer scanner that is
currently being developed by ASML. The inside of an EUV machine is kept
vacuum as EUV light is absorbed by air. The wafer flow is presented in Figure 1.

Locks Chucks

turn

turn

Internal robots

swap

measure expose

Fig. 1: Wafer paths within the EUV ma-
chine.

First, the external track robot (which
is not shown) puts a wafer in one of
the four locks. This lock is depressur-
ized, and then the wafer is picked up
by one of the two internal robots. Each
internal robot has two arms that can
each hold a wafer and that are oppo-
site to each other. The internal robot
turns and puts the wafer on the closest
chuck, which is in the so-called “mea-
sure position”. The wafer is measured
and a chuck swap is performed. The
chuck with the measured wafer now is
in the “expose position” and the wafer
is exposed. After another chuck swap,
the exposed wafer is picked up by one
of the internal robots which turns and
puts it in a depressurized lock. Af-
ter the lock has been pressurized, the
track robot removes the exposed wafer
from the machine. Each wafer thus has a fixed recipe for its route: lock - internal
robot - chuck - internal robot - lock. There is a choice which locks, internal robots
1 The timing parameters of the production depend on the chips to be produced.

and chucks are used by a wafer. An obvious question that arises is why we not
let the unexposed wafers flow through the upper two locks and let the exposed
wafers exit through the lower two locks. In that case there are no crossing mate-
rial paths which means that there is no deadlock possible by construction. The
answer is twofold. First, if locks are unidirectional then filling the machine from
the initial, empty, state takes unnecessarily long. Second, if locks are unidirec-
tional then the depressurization operation might become critical instead of the
exposure, since depressurization takes more than twice as long as exposure in a
typical wafer recipe. As noted above, this is undesirable. In Section 4, we will
prove that indeed the exposure subsystem is critical in the design of Figure 1,
and that restricting the wafer flow to prevent deadlock a priori lowers both the
throughput and the utilization of the exposure subsystem.

A typical example of a deadlock situation in the EUV machine would be a
state in which all four robot arms hold unprocessed wafers, and both chucks
hold processed wafers. A controller for the EUV machine should ensure that
no such deadlock situation can ever be reached. The problem of finding such a
control strategy is commonly referred to as the deadlock avoidance problem. The
EUV machine is a disjunctive RAS according to the taxonomy of [15]. Instead
of the traditional Petri net or graph based approaches to solving the deadlock
avoidance problem, we will show in the next section how it can be tackled using
the Smv model checker.

3 A Least Restrictive Deadlock Avoidance Policy

In this section, after a (very) brief introduction into Smv, we present our Smv
model of the EUV machine, discuss how one can formalize the notion of deadlock
as a temporal logic formula, and present the deadlock avoidance policy that we
synthesized using Smv. The reader is referred to [7] and [16] for an extensive
introduction into model checking and Smv.

3.1 SMV

In the approach supported by the Smv model checker, a system is modeled as
a finite transition system, i.e. as a tuple (S, sinit,→) where S is a finite set of
states, sinit is the initial state, and → ⊆ S × S is the transition relation. We
write s → s′ instead of (s, s′) ∈→. A state is defined as a valuation of a number
of state variables. The value of state variable v in state s is denoted by s(v).
Furthermore, s[v := c] denotes the state that is obtained by updating the value
of v in state s to c. A path of a transition system is a sequence s0s1s2 · · · such
that for all i, si → si+1. A state is reachable if it occurs on some path that starts
in sinit.

In Smv, specifications are described in Computation Tree Logic (CTL), a
branching time temporal logic. Below some examples of CTL formulas are given,
which should be sufficient to understand the present paper. The basic building
blocks of CTL are atomic formula, which denote functions from the set of states

to {true, false}. For instance, if v is a state variable, then v = 2 is an atomic
formula, which denotes the function from states to {true, false} that maps a
state s to true iff s(v) = 2. In this case, we say state s satisfies formula v = 2,
notation s |= (v = 2). Every atomic formula is a state formula. State formulas
can be combined with Boolean connectives and path operators. We show three
path operators that are relevant for this paper. First, if φ is a state formula, then
AG(φ) also is a state formula. A state s satisfies AG(φ), denoted by s |= AG(φ),
if for all paths s0s1s2 . . . with s = s0, and for all i ≥ 0, si |= φ. Second, if φ is a
state formula, then EF(φ) is also a state formula. We define s |= EF(φ) if there
exists a path s0s1s2 . . . such that s = s0 and si |= φ, for some i ≥ 0. Finally, if
φ is a state formula, then EG(φ) also is a state formula. We define s |= EG(φ)
if there exists a path s0s1s2 . . . with s = s0 such that for all i ≥ 0, si |= φ.

3.2 An SMV Model of the EUV Machine

The EUV machine can be modeled conveniently and concisely in Smv. In fact,
the full code is displayed in Figure 2.

module main () module entry_exit (p)
{ {

-- state variables if (p=e)
l : array 0..3 of {e,r,g}; next(p):=r;
rb: array 0..1 of array 0..1 of {e,r,g}; else if (p=g)
c : array 0..1 of {e,r,g}; next(p):=e;

}
-- initialization
for (i=0; i<4; i=i+1) module move (lft,rgt)

init(l[i]):=e; {
for (i=0; i<2; i=i+1) if (lft=r && rgt=e)

for (j=0; j<2; j=j+1) {
init(rb[i][j]):=e; next(lft):=e;

for (i=0; i<2; i=i+1) next(rgt):=r;
init(c[i]):=e; }

else if (lft=e && rgt = g)
-- system dynamics {
for (i=0; i<4; i=i+1) next(lft):=g;

tl[i]: process entry_exit(l[i]); next(rgt):=e;
}

for (i=0; i<4; i=i+1) }
for (j=0; j<2; j=j+1)

lr[i][j]: process move(l[i],rb[(i<2?0:1)][j]); module expose (p)
{

for (i=0; i<2; i=i+1) if (p=r)
for (j=0; j<2; j=j+1) next(p):=g;

for (k=0; k<2; k=k+1) }
rc[i][j][k]: process move(rb[i][j],c[k]);

for (i=0; i<2; i=i+1)
exp[i]: process expose(c[i]);

}

Fig. 2: Smv model of EUV machine.

For each of the 10 positions in the machine our model contains a state vari-
able: an array l of size 4 for the locks, a 2-dimensional array rb of size 2 × 2
for the robots, and an array c of size 2 for the chucks. These state variables can
either take value e (empty), which means that the position is empty, value r
(red), which means that the position is occupied by an unexposed wafer, or g
(green), which means that the position is occupied by an exposed wafer. Initially,
the machine is completely empty and all state variables have value e.

To model the system dynamics, i.e., the movement and exposure of wafers,
we introduce 22 asynchronous processes, which are executed in an interleaving
fashion:

– For each of the 4 locks i we have process tl[i], which may either put an
unexposed wafer in lock i if it is empty, or move an exposed wafer from
the lock to the track robot. In the definition of process tl[i] we use an
auxiliary function entry exit that describes the state change that results
from running this process.

– For each of the 16 pairs of positions i, j such that i is on the left of j and
a wafer can move directly from i to j (or back), we introduce a process
that takes care of moving unexposed wafers from i to j, and exposed wafers
from j back to i. In the definition of these processes we use a function
move(lft, rgt) that describes the state change that results from moving a
wafer from lft to rgt or vice versa.

– For each of the 2 chucks i we introduce a process exp[i] that models exposure
of the wafer. An auxiliary function expose describes the state change that
results from exposing the wafer at position p: the value of the corresponding
state variable changes color from r (red) to g (green).

In the Smv model we abstract from the turning of internal robots. So a wafer
can be picked up by both arms of an internal robot (possibly, the robot first has
to turn). Similarly, the Smv model abstracts from chuck swaps and the measure
operation. In Section 4, we present a more detailed model of the EUV machine
in which we do not abstract from these aspects.

As it turns out, our Smv model has 57116 reachable states, which is close
to the total number of states which equals 310 = 59049. An example of an
unreachable state is one in which the machine is completely filled with exposed
wafers. Transition systems of this size can very easily be handled by Smv and
the computer hardware that is available today. In fact, Smv routinely handles
systems with 1020 states and beyond, so we expect that our approach can also
be applied to considerably larger designs.

3.3 Defining Deadlock and Safety in SMV

Standard textbooks on operating systems, e.g. [20], state four conditions for
deadlock in systems that consist of processes that compete for resources. The
first three conditions concern the model itself and are necessary, and the fourth
condition concerns the states of the model and is necessary and sufficient when

the first three are met: (i) mutual exclusion: only one process may use a resource
at a time, (ii) hold and wait: a process may hold allocated resources while await-
ing assignment of others, (iii) no preemption: no resource can be forcibly removed
from a process that is holding it, and (iv) circular wait: a closed chain of pro-
cesses exists such that each process holds at least one resource needed by the
next resource in the chain.

In the EUV machine, the wafers are modeled as the processes and they
compete for the positions in the machine that constitute the resources. The
model of the EUV machine satisfies the first three conditions for deadlock. The
fourth condition, which thus is necessary and sufficient for deadlock, can be
formalized with help from a needs function, that specifies for each wafer the
set of positions it may move to. Let P denote the set of positions in the EUV
machine. For p ∈ P and c ∈ {r, g}, we define needs(p, c) ⊆ P to be the set of
positions (different from p) to which a wafer with color c at position p may move
next. In particular, if p is a chuck, then needs(p, r) = needs(p, g) = R, where R is
the set of positions of the internal robots. If s is a state and p a position then we
use needss(p) as an abbreviation for needs(p, s(p)). The circular wait property
can now be defined as follows.

Definition 1 (Circular wait). A state s has a circular wait in Q ⊆ P iff
s(q) 6= e ∧ ∅ 6= needss(q) ⊆ Q 6= ∅ for all q ∈ Q.

It is not possible to directly formulate the circular wait property in terms of
CTL, so some encoding is required. The basic idea is that the machine has a
circular wait in a subset Q of positions iff the wafers in Q will never be able to
move again. Observe that if in our model a transition s → s′ moves a wafer from
place p to place p′, then p is empty in s′. Thus, the property that some wafer
cannot move anymore can be formalized in CTL as follows.

Definition 2 (Jam). A position p is jammed in state s iff s |= AG(p 6= e). A
state s is jammed iff some position is jammed in s.

Proposition 1 below asserts the equivalence of the circular wait and jammed
properties, thereby providing us with a way to express deadlocks in CTL. It has
only been proven for our model of the EUV machine, but from the proofs it
should be clear that these results can be generalized to a whole class of resource
allocation problems.

Proposition 1. A state has a circular wait in some Q iff it is jammed.

In the remainder of this paper, we will say that a state is deadlocked if it
has circular wait, i.e., if it is jammed. The question that we need to answer
is whether and how we can prevent the system of entering a deadlocked state.
In Dijkstra’s paper on the banker’s algorithm [8], the first published deadlock
avoidance algorithm, a state is defined to be safe if “all processes can be run
to completion”. In our case, the wafers are the processes and “a wafer is run to
completion” if it exits the machine. Thus, Dijkstra’s definition can be translated
to CTL as follows.

Definition 3 (Safe states). A state s is safe iff s |= EF
(∧

p∈P (p = e)
)
.

Note that in general safe and not being deadlocked are different things. If a state
s is not deadlocked then s |=

∧
p∈P EF(p = e), i.e., each individual position

can be emptied, but it need not be the case that all positions can be emptied
simultaneously. If a state is deadlocked it is unsafe, but if it is unsafe it need not
be deadlocked. However, in many cases and (according to Smv) in particular for
our model of the EUV machine, the following property does hold2:

AG(safe ⇐⇒ (EG ¬deadlock)). (1)

This formula suggests a simple least restrictive DAP: just keep the system in a
safe state. This policy can be realized for the EUV machine. Every non-initial
safe state has at least one safe successor (different from itself), otherwise it would
not be not possible to return to the initial state. In addition, we verified using
Smv that all successors of the initial state are again safe.

3.4 A Least Restrictive DAP

In order to actually build a controller that always keeps the system in a safe state,
it would clearly be very helpful to have a simple, yet exact characterization of
the set of safe states. We see two ways to obtain such a characterization.

1. When checking whether the initial state is safe, Smv computes a binary
decision diagram (BDD, see [6]) which provides a compact representation of
the set of safe states. With the available Smv releases it is not possible to get
the BDD out. However, since there is an open-source distribution available
solving this problem should just be a matter of programming.

2. The set of safe states can be manually characterized by the following iterative
procedure:

S := true
while (sinit 6|= AG(safe ⇐⇒ S))

S := S ∧ (¬C)

where C is the characterization of the last state of the counter example that
is generated by Smv.

The first approach enables a least restrictive DAP with linear time complex-
ity, since checking whether a state is included in a BDD takes O(n) operations,
where n is the number of booleans from which the BDD is composed (20 in case
of the EUV machine). The size of the BDD, however, can in the worst case be
2 In fact, in the EUV machine a state is safe if and only if it has no deadlock. It is

easy to come up with variations of the machine with states that are not safe and not
deadlocked, for example a design in which the internal robots only have one arm. In
such cases, in order to make formula (1) hold, we need to require weak fairness for
all processes in the Smv model to exclude runs in which no progress is made due to
infinite stuttering of some components.

exponential in the number of booleans. A second drawback is that it can be dif-
ficult to derive individual unsafe and/or deadlock situations from a BDD, which
may be required during the design phase of the system. The second approach
can quickly become practically infeasible since all unsafe states are explicitly
enumerated. If it is carried out manually, however, then it might be possible to
abstract from irrelevant state information and to visualize the various unsafe
situations in the system. Of course, this requires some effort and creativity from
the analyst. The second approach has been used to characterize the safe states
of the EUV machine. With five iterations, we found four unsafe situations, de-
picted in Figure 3, which happen to characterize all deadlocks. A right-pointing

Fig. 3: The four unsafe scenarios (modulo symmetry) in the EUV machine.

arrow represents an unexposed wafer, a left-pointing arrow represents an ex-
posed wafer, and a black square represents an unexposed or exposed wafer. The
predicate S that exactly characterizes the set of safe states is the negation of
the situations shown in Figure 3, and can be described in the input language of
Smv with 695 characters.

Note that Smv can also be used to obtain a simple under-approximation
of the set of safe states (when, e.g., the BDD is too large to use and the iter-
ative process is too time consuming). If C is a candidate for a simple under-
approximation, then this can be verified with the CTL property AG(C ⇒ safe).
Again, counter-examples can be used to correct C while retaining low complex-
ity. Note, however, that it now becomes is necessary to ensure that the initial
state is reachable from any state in C (this is true by definition for the set of all
safe states).

4 Throughput Analysis

A first objective for a controller of the EUV machine is to avoid deadlocks. In
the previous section, using our Smv model, we synthesized a least restrictive
control policy that achieves this. A second key objective for a controller of the
machine of course is to maximize throughput. Our Smv model is not sufficiently
detailed to address this issue since, for instance, relevant information about the
delays in the locks and the speed of the robots has not been included. Also,

the Smv model abstracts from the delays due to turning of the internal robots,
measuring of wafers, and swapping of the chucks. Therefore, in this section, we
present a more refined timed automata model ([2, 3]), which contains sufficient
information to address the throughput issue.

In order to define and analyze our model, we used the Uppaal model check-
ing tool. Uppaal supports modeling of systems in terms of networks of timed
automata which are extended by blocking synchronization and bounded inte-
ger variables. Similarly to Smv, the semantics of a Uppaal model is defined by
a transition system. In addition to the discrete part, the states also contain a
real-valued clock valuation. For these models, the Uppaal model checker can
decide a subset of Timed Computation Tree Logic (TCTL, see [1]). For a detailed
account of Uppaal we refer to [13] and to http://www.uppaal.com.

After presenting the Uppaal model of the EUV machine in Section 4.1, we
discuss the relationship between the Uppaal and Smv models in Section 4.2.
Then, in Section 4.3, we use Uppaal to derive a schedule for the EUV machine
that optimizes throughput.

4.1 UPPAAL Model

The Uppaal model of the EUV machine contains the same state variables as
the Smv model for the positions in the machine: arrays l, rb and c, which
may take the same values e, r and g to indicate that a position is respectively
empty, filled with an unexposed wafer, or with an exposed wafer. In addition,
the Uppaal model has a number of Boolean state variables to ensure “physical
integrity”. For instance, an internal robot can only access a lock if it is vacuum.
This requirement is modeled using the Boolean lb[id] for lock number id. The
model consists of 12 automata, of which 11 model physical components of the
machine: the track robot, the four locks, the four robot arms (two for each
of the robots), and the two chucks. These automata move wafers around with
certain delays and according to the material paths as specified in Section 2. An
additional automaton, the observer, is used for throughput optimization.

To illustrate the modeling in Uppaal, we present the template for one arm
of an internal robot, see Figure 4. This template has four parameters: a constant
id that identifies the internal robot to which the arm belongs, two constants l0
and l1 that identify the locks to which the robot arm has access, and a channel
turn. When a robot arm is at the locks, then it can get a wafer from a lock
(L02R and L12R), or it can put a wafer in a lock (R2L0 and R2L1). Of course,
it can only perform these actions if the lock is vacuum, and if the wafer flow is
as specified in Section 2. Similarly, when a robot arm is at the chucks then it
can load/unload a wafer to/from the chuck that is at the measure location. The
cb variables are used to ensure that only one robot arm has access to the chuck
at a time and that the chuck cannot execute a transition while the robot arm is
loading/unloading a wafer.

Figure 5 shows the observer process which, as we will explain in more detail
in Section 4.3, is used to ensure progress in the model. This process measures
the time until the first wafer exits the system (this is called an unload event) in

at_locks at_chuck

turning
x<=TURN

turning2
x<=TURN

L02R
x<=L2R_T

R2L0
x<=R2L_T

C02R
x<=C2R_T

R2C0
x<=R2C_T

L12R
x<=L2R_T

R2L1
x<=R2L_T

R2C1
x<=R2C_T

C12R
x<=C2R_T

turn!
x:=0

x==TURN
turn!

turn!
x:=0

x==TURN
turn!

l[l0]==R &&
rb[id][0]== E &&
!lb[l0]
l[l0]:=E, rb[id][0]:=R,
lb[l0]:=true, x:=0

x==L2R_T
lb[l0]:=false

rb[id][0]==G &&
l[l0]==E &&
!lb[l0]
rb[id][0]:=E, l[l0]:=G,
lb[l0]:=true, x:=0

x==R2L_T
lb[l0]:=false

rb[id][0]==R &&
c[0]==E &&
!cb[0]
rb[id][0]:=E, c[0]:=R,
cb[0]:=true, x:=0

x==R2C_T
cb[0]:=false

rb[id][0]==E &&
c[0]==G &&
!cb[0]
rb[id][0]:=G, c[0]:=E,
cb[0]:=true, x:=0

x==C2R_T
cb[0]:=false

rb[id][0]== E &&
l[l1]==R && !lb[l1]
l[l1]:=E, rb[id][0]:=R,
lb[l1]:=true, x:=0

x==L2R_T
lb[l1]:=false

rb[id][0]==G &&
l[l1]==E && !lb[l1]
rb[id][0]:=E, l[l1]:=G,
lb[l1]:=true, x:=0

x==R2L_T
lb[l1]:=false

rb[id][0]==R &&
c[1]==E &&
!cb[1]
rb[id][0]:=E, c[1]:=R,
cb[1]:=true, x:=0

x==R2C_T
cb[1]:=false

rb[id][0]==E &&
c[1]==G &&
!cb[1]
rb[id][0]:=G, c[1]:=E,
cb[1]:=true, x:=0

x==C2R_T
cb[1]:=false

Fig. 4: Template for a robot arm.

location L0, and the time between two consecutive unload events in location L1
using its local clock x.

L0 L1
unload?
x:=0

unload?
x:=0

Fig. 5: Process for the observer.

4.2 Bisimulation between SMV and UPPAAL models

Clearly, there is a relationship between the Smv model and the Uppaal model.
The Smv model is an abstraction from the Uppaal model, which has the prop-
erty that every transition in the Uppaal model can be simulated in the Smv
model, and vice versa. Formally, the relationship between the two models can
be expressed as a stuttering bisimulation relation in the sense of [5]. Stuttering
bisimulations are defined in terms of Kripke structure, an extension of transition
systems in which to each state a set of atomic propositions is associated that
hold in that state.

Definition 4 (Kripke Structures). Let AP be a set of atomic proposition
symbols. A Kripke structure is a structure (S, sinit,→, l), where (S, sinit,→) is a
transition system and function l : S → 2AP associates to each state a set of
atomic proposition symbols.

In this paper, we let AP be the set of equations of the form p = v, where p
is a position in the EUV machine and v ∈ {e, r, g}. For the transition systems
induced by the Smv and Uppaal models, the labeling is obvious: we label a
state s with p = v iff this equation holds in s. For the Smv model the labeling

function is injective: different states have different labels. For the Uppaal model
this is clearly not the case.

A stuttering bisimulation relates states from two Kripke structures. Initial
states are related, and related states are labeled with the same proposition sym-
bols. If two states are related and from one state a transition is possible, then it
should be possible to simulate this transition from the related state, after first
doing zero or more stuttering transitions, i.e., transitions that do not change the
labeling.

Definition 5 (Stuttering Bisimulation). A stuttering bisimulation between
Kripke structures (S, sinit,→, l) and (S′, s′init,→′, l) is a relation R ⊆ S × S′ s.t.

1. (sinit, s
′
init) ∈ R,

2. If (r, s) ∈ R then l(r) = l(s),
3. if (r, s) ∈ R and r → r′ then there exist, for some n ≥ 0, s0, s1, . . . , sn such

that s0 = s and, for all i < n, si →′ si+1, (r, si) ∈ R and (r′, sn) ∈ R.
4. if (r, s) ∈ R and s → s′ then there exist, for some n ≥ 0, r0, r1, . . . , rn such

that r0 = r and, for all i < n, ri → ri+1, (ri, s) ∈ R and (rn, s′) ∈ R.

Proposition 2. Consider the projection function π from states of the Kripke
structure induced by the Uppaal model to states of the Kripke structure induced
by the Smv model. Function π only preserves the values of the arrays l, rb and
c. Let R be the relation consisting of pairs (s, π(s)), for s a reachable state from
the Uppaal model. Then R is a stuttering bisimulation between the Uppaal and
Smv Kripke structures.

The significance of the above result stems from the fact that validity of CTL
formulas without nexttime operator (i.e. all the formulas used in this paper) is
preserved by stuttering bisimulation equivalence (see [5]). Thus, all the results on
deadlock avoidance established using Smv in Section 3 carry over to the Uppaal
model. It is not possible to obtain these results directly using the Uppaal tool
since (a) Uppaal does not support full CTL, and (b) the state space of the
Uppaal model is so big that it cannot be fully explored.

4.3 Finding an Optimal Schedule

As mentioned above, the observer process of Figure 5 observes unload events.
It starts in location L0 and upon the first unload event it resets its local clock
x and enters location L1. In location L1 the clock is reset whenever an unload
event takes place. The observer is used to find an infinite schedule that takes
at most H time units until the first unload event, and that has at most S time
units between two unload events. Such a schedule is specified by the following
TCTL property that can be checked by Uppaal.

EG((observer.L0 ⇒ observer.x ≤ H) ∧ (observer.L1 ⇒ observer.x ≤ S)) (2)

If this property is satisfied, then Uppaal can return an example execution
that consists of a path followed by a cycle. Such an execution thus gives an infinite

control schedule for the wafer scanner with a stationary throughput of at least
one wafer per S time units. Unfortunately, the size of the reachable state space
prevents Uppaal from finding such an execution directly. We therefore added
heuristics to the model to prune the state space:

1. The DAP derived in the previous section has been used to avoid unsafe
material configurations of the machine.

2. Some transitions are useless (or suboptimal) in certain states, e.g., an internal
robot can always turn, but this is useless if it does not hold wafers. The state
space has been reduced by adding guards that prevent such useless behavior.

3. The optimal behavior of the locks in the initial phase (the filling of the ma-
chine) differs from their optimal behavior in the stationary phase. Therefore
a heuristic has been added to enforce this difference: a lock can pressurize
when it contains either an exposed wafer, or it is empty and the machine is
not yet filled with enough wafers to be in the stationary state.

4. Some transitions have been made urgent (greedy): they must be taken as
soon as they are enabled. For instance, if the DAP allows loading a wafer to
a lock, then this must be done immediately.

Note that using urgent transitions without the DAP may be an unwise idea,
since this can result in many deadlocks with the effect that an execution satis-
fying Property 2 does not exist anymore in the model. Also note that at least
the last three heuristics may remove good schedules.

A lower bound on the time until the first unload event, minh, can easily be
derived from the model. It is also easy to see that the minimal separation time
between exposed wafers that appear at the chuck that is in the measure position
(and can therefore be picked up by an internal robot) equals mins = EXPOSE+
SWAP, where the former is the time needed for the expose operation and the
latter is the time needed for the chuck swap. Therefore, the theoretical maximal
stationary throughput of the machine is at most one wafer per mins time units.
For the Uppaal model with heuristics it is possible to find an execution that
satisfies Property 2 for a value of H that is 5% larger than minh and for S = mins.
Figure 6 shows this schedule that optimizes the stationary throughput of the
EUV machine.

It took only little effort to change the Uppaal model in order to analyze two
alternative machine designs w.r.t. throughput. In the first design, the incoming
wafers have been restricted to the upper two locks and the outgoing wafers to
the lower two locks (to prevent deadlock a priori; see Section 2). We can easily
find an optimal schedule with S = 1.61 · mins that shows that not the expose
operation but the locks have become critical. This confirms our suspicion that
has been stated in Section 2. The second alternative design consists of only two
locks and one internal robot. We can easily find a schedule with S = 1.82 ·mins,
but we cannot guarantee that this is an optimal schedule.

A B

TrackRobot

L3

L2

L1

L0

R11

R10

R01

R00

C1

C0

LENS

C2R
DEPRES
EXPO
L2R
L2T
MEAS
PRES
R2C
R2L
SWAP
SWITCH
T2L
TURN

Fig. 6: A schedule that optimizes the stationary throughput of the EUV machine. The
cyclic part of the schedule consists of the interval between points A and B. Note that
the operation of the lens is only interrupted by the chuck swap (which is necessary).

5 Conclusions

The Smv model checker has successfully been used to characterize the set of
safe states of the EUV machine. This characterization consists of a very short
boolean expression over the places in the machine and is useful for the design
of an actual controller since deadlock can easily be avoided by examining the
possible successor states of the current state. Since the characterization is exact,
the controller implements a least restrictive (optimal) deadlock avoidance policy.
Furthermore, we used the Uppaal model checker to compute infinite schedules
for the EUV machine that optimize stationary throughput. It took little effort to
change the Uppaal model in order to analyze two alternative machine designs.
In theory, our approach can be applied to a broad class of resource allocation
systems. As always when using model checking, the state space explosion is the
main problem for scalability. Altogether, in our view, the present work nicely
illustrates the usefulness of model checking techniques to support the design
process of applications that involve resource allocation and scheduling. Building
models that are just abstract enough for addressing a specific question, often
provides a good way to deal with the state space explosion problem.

Acknowledgements. The authors thank Biniam Gebremichael for his useful
suggestions concerning the Smv model, and the anonymous reviewers for their
helpful comments on a preliminary version of the present paper.

References
1. R. Alur, C. Courcoubetis, and D. L. Dill. Model checking in dense real time.

Information and Computation, 104:2–34, 1993.
2. R. Alur and D. L. Dill. Automata for modeling real-time systems. In Proceedings

17th ICALP, pages 322–335, 1990.
3. R. Alur and D. L. Dill. A theory of timed automata. TCS, 126:183–235, 1994.
4. N. C. W. M. Braspenning. Scheduling and behavior verification of machines based

on task-resource models. Master’s thesis, Department of Mechanical Engineering,
Eindhoven University of Technology, The Netherlands, October 2003. Confidential.

5. M.C. Browne, E.M. Clarke, and O. Grümberg. Characterizing finite Kripke struc-
tures in propositional temporal logic. TCS, 59(1,2):115–131, 1988.

6. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transaction on Computers, C-35(8):677–691, August 1986.

7. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.
8. E. W. Dijkstra. Cooperating sequential processes. Technical report, Eindhoven

University of Technology, The Netherlands, 1965.
9. A. Fehnker. Scheduling a steel plant with timed automata. In Proceedings

RTCSA’99. IEEE Computer Society Press, 1999.
10. B. Gebremichael and F. W. Vaandrager. Control synthesis for a smart card per-

sonalization system using symbolic model checking. In Proceedings FORMATS’03,
LNCS 2791, pages 189–203. Springer–Verlag, 2004.

11. V. Hartonas-Garmhausen, E. M. Clarke, and S. Campos. Deadlock prevention in
flexible manufacturing systems using symbolic model checking. In IEEE Confer-
ence on Robotics and Automation, volume 1, pages 527–532, 1996.

12. M. Hendriks, N.J.M. van den Nieuwelaar, and F.W. Vaandrager. Model checker
aided design of a controller for a wafer scanner. Report NIII-R0430, Institute for
Computing and Information Sciences, University of Nijmegen, June 2004.

13. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International
Journal on Software Tools for Technology Transfer, 1(1/2):134–152, 1997.

14. M. Lawley and S. A. Reveliotis. Deadlock avoidance for sequential resource alloca-
tion systems: Hard and easy cases. International Journal of Flexible Manufacturing
Systems, 13(4):385–404, 2001.

15. M. Lawley, S. A. Reveliotis, and P. Ferreira. Design guidelines for deadlock han-
dling strategies in flexible manufacturing systems. International Journal of Flexible
Manufacturing Systems, 9(1):5–30, January 1997.

16. K. L. McMillan. Symbolic Model Checking. PhD thesis, Carnegie Mellon University,
Pittsburgh, May 1992.

17. T. Murata. Petri nets: Properties, analysis, and applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

18. J. Park and S. A. Reveliotis. Deadlock avoidance in sequential resource allocation
systems with multiple resource acquisitions and flexible routings. IEEE Transac-
tions on Automatic Control, 46(10):1572–1583, 2001.

19. S. A. Reveliotis, M. Lawley, and P. Ferreira. Polynomial-complexity deadlock
avoidance policies for sequential resource allocation systems. IEEE Transactions
on Automatic Control, 42(10):1344–1357, 1997.

20. W. Stallings. Operating Systems. Prentice–Hall, 1998.
21. Y. Wang and Z. Wu. Deadlock avoidance control synthesis in manufacturing sys-

tems using model checking. In IEEE American Control Conference, volume 2,
pages 1702–1704, 2003.

22. S. Yovine. Kronos: a verification tool for real-time systems. International Journal
on Software Tools for Technology Transfer, 1(1/2):123–133, 1997.

