Analysis of a Protocol for Dynamic
Configuration of IPv4 Link Local Addresses
Using UprpPAAL*

Biniam Gebremichael', Frits Vaandrager!, and Miaomiao Zhang?

! Institute for Computing and Information Sciences
Radboud University Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
{B.Gebremichael,F.Vaandrager}@cs.ru.nl
2 Tongji University, China
miaomiao@mail.tongji.edu.cn

Abstract. Formal methods have been applied frequently to analyze
(critical parts of) standards for communication protocols and it has been
demonstrated that their application may help to improve the quality of
these standards. Nevertheless, despite several decades of formal meth-
ods research, formal methods notations have rarely been included in the
authoritative part of protocol standards. Also, the relationships between
(abstract) formal models and informal protocol standards are typically
obscure. It is our ambition to improve this situation. To establish the
current state-of-the-art, we report in this paper on a case study in which
UPPAAL is used to formally model parts of Zeroconf, a protocol for dy-
namic configuration of IPv4 link-local addresses that has been defined in
RFC 3927 of the IETF. Our goal has been to construct a model that (a)
is easy to understand by engineers, (b) comes as close as possible to the
informal text (for each transition in the model there should be a corre-
sponding piece of text in the RFC), and (c) may serve as a basis for formal
verification. Our conclusion is that UPPAAL, which combines extended
finite state machines, C-like syntax and concepts from timed automata
theory, is able to model Zeroconf in a faithful and intuitive manner, using
notations that are familiar to protocol engineers. Our modeling efforts
revealed several errors (or at least ambiguities) in the RFC that no one
else spotted before. We also identify a number of points where UPPAAL
still can be improved. After applying a number of abstractions, UPPAAL
is able to fully explore the state space of an instance of our model with
three hosts, and to establish some correctness properties.

* This work was supported by PROGRESS project TES4199, Verification
of Hard and Softly Timed Systems (HaaST), the FEuropean Community
Project IST-2001-35304 Advanced Methods for Timed Systems (AMETIST),
http://ametist.cs.utwente.nl, and the DFG/NWO bilateral cooperation project
Validation of Stochastic Systems (VOSS2). Author names are listed alphabetically;
all three authors made an equally significant contribution to this paper.

1 Introduction

Our society increasingly depends on the correct functioning of modern com-
munication technology. Most prominent are (mobile) phones and Internet, but
there are also networks in modern cars, trains, and airplanes, and the new gen-
eration of consumer electronics allows all sorts of devices to communicate with
each other. The most important and most often used protocols that describe the
operation of these networks are standardized. Examples of this are the Internet
protocol (TCP/IP) and all its derivatives, FireWire/iLink (IEEE 1394), HAVi,
WAP and BlueTooth. Due to a combination of factors, the complexity of these
protocol standards is often very high: rapid changes in the capabilities of the
underlying hardware, the fact that often many (industrial) parties are involved
in standardization, each with its own interests, and market demands to extend
the functionality of the protocol. Since these standards serve as a guide to im-
plementors from many different companies, with very different backgrounds, it
is vital that standards only allow for one clear interpretation, are complete and
ensure the required functionality for each implementation. For most protocol
standards this is clearly not the case. In fact, it is surprising that protocols that
are of such immense importance to our society are typically written in informal
language, with frequent ambiguities, omissions and inconsistencies. They also
fail to state what properties are expected of a network running the protocol,
and what it means for an implementation to conform to a standard.

By now there is ample evidence that formal (mathematical) techniques and
tools may help to improve the quality of protocol standards. Numerous publi-
cations describe the formal modeling and analysis of critical parts of protocols,
and via these case studies many previously undetected bugs have been detected
(see e.g. [12,7,15,22,27,18, 11, 28]). In most cases, these studies were carried out
after the standard had been completed and involved guessing to fill in holes and
resolve ambiguities in the standard. An exception is the work by Romijn and
her colleagues at the Eindhoven University of Technology, who aim at applying
formal methods already during the standard development process. Their efforts
have resulted, for instance, in the discovery and correction of many errors, omis-
sions and inconsistencies, as well as the addition of correctness properties, in the
IEEE 1394.1 FireWire Net Update standard [26].

In order to avoid holes and ambiguities in standards the obvious way to go
is to describe critical parts using programming and/or formal specification lan-
guages, similar to the way in which diagrams are used to specify the electrical
circuits and mechanical parts. There have been joint attempts of academia and
industry to arrive at formal description languages for protocols. The most no-
table attempts at this have been the LOTOS and SDL standardization efforts.
Interestingly — to the best of our knowledge — these languages have never
been used in the authoritative part of protocol standards. Some ISO standards
written in the 90’s had informative annexes written in a formal language such
as LOTOS, but in case of ambiguity, the informal (natural language) part had
precedence. Apparently, standardization bodies either did not trust/understand
the formal specifications themselves or were afraid implementors would misinter-

pret them. Some protocol standard have extended finite state machines (EFSMs)
inside, but these are mostly illustrative, not completely formal, and sometimes
contain mistakes.> Bruns and Staskauskas [7] used C to describe the SONET Au-
tomatic Protection Switching (APS) protocol and report that developers found
their C description easy to understand and superior to that which appeared in
the APS standard. The lack of abstraction mechanisms is an obvious drawback
of C. Bruns and Staskauskas suggest that abstraction can be introduced through
an implementation relation.

The relationships between an (abstract) formal model of a protocol and the
corresponding informal standard is typically obscure. As pointed out by [6],
“current research seems to take the construction of verification models more or
less for granted, although their development typically requires a coordinated in-
tegration of the experience, intuition and creativity of verification and domain
experts. There is a great need for systematic methods for the construction of
verification models to move on, and leave the current stage that can be charac-
terized as that of model hacking. The ad-hoc construction of verification models
obscures the relationship between models and the systems that they represent,
and undermines the reliability and relevance of the verification results that are
obtained.” It is our ambition to improve this situation. To establish the current
state-of-the-art of formal methods and tools, we report in this paper on a case
study where we use UPPAAL to formally model parts of Zeroconf, a protocol for
dynamic configuration of IPv4 link-local addresses that is defined in RFC 3927
of the IETF. Our goal has been to construct a model of Zeroconf that (a) is easy
to understand by engineers, (b) comes as close as possible to the informal text
(for each transition in the model there should be a corresponding piece of text
in the RFC), and (c) may serve as a basis for formal verification.

UPPAAL [3] is an integrated tool environment for specification, validation and
verification of real time systems modeled as networks of timed automata [2].
The tool is available for free for non-profit applications at www.uppaal.com. The
language for the new version UPPAAL 3.6 features a subset of the C program-
ming language, a graphical user interface for specifying networks of EFSMs, and
timed automata syntax for specifying timing constraints between events. Due
to these extensions, the UPPAAL syntax appears to be sufficiently expressive for
the description of critical parts of protocol specifications:

1. The graphical syntax for EFSMs in combination with the C-like syntax are
easy to understand for protocol designers and implementers, and very close
to notations they use anyway.

2. UprpAAL allows one to specify timing constraints between events, which is
quite important in many protocol specifications.

3. The UprpPAAL language does have formal semantics and the transitions pro-
vide a simple abstraction mechanism for the C-like syntax: the semantics of
a program is defined in terms of its effect on the observable state variables.

4. The UPPAAL toolset supports simulation and model checking.

3 See, for instance, http://www.inrialpes.fr/vasy/Press/firewire.html.

Zeroconf In this paper, we describe and analyze (critical parts of) Zeroconf
[10], a protocol for dynamic configuration of IPv4 link-local addresses that has
been defined by the IETF Network Working Group in RFC 3927 [9]. There
are many situations in which one would like to use the Internet Protocol for
local communication, for instance in the setting of in home digital networks or
to establish communication between laptops. For these type of applications it
is desirable to have a plug-and-play network in which new hosts automatically
configure an IPv4 address, without using external configuration servers, like
DHCP and DNS, or requiring users to set up each computer by hand. The
Zeroconf protocol has been proposed by the IETF to achieve exactly this. It
describes how a host may automatically configure an interface with an IPv4
address within the 169.254/16 prefix that is valid for communication with other
devices connected to the same physical (or logical) link. The most widely adopted
Zeroconf implementation is Bonjour from Apple Computer®, but several other
implementations are available.’

Contribution The contribution of this paper is, first of all, a formal model of
a critical part of Zeroconf — a protocol with clear practical relevance — that
is easy to understand, faithful to the RFC, and with an extensive discussion of
the relationship between the model and the RFC. Our modeling efforts revealed
several errors (or at least ambiguities) in the RFC that no one else spotted
before. We also identify several directions where UPPAAL still can be improved.
Finally, after applying several nontrivial abstractions we manage, using UPPAAL,
to fully explore the state space of an instance of our model with three hosts, and
establish some interesting correctness properties.

Related Work The Zeroconf protocol involves a number of probabilistic aspects
that are not incorporated in our UPPAAL model: hosts select IP-addresses ran-
domly using a pseudo-random number generator, and at some point during the
protocol they wait for a random amount of time selected uniformly from an in-
terval. The probabilistic behavior of Zeroconf has been studied in [5,20]. The
primary goal of [5] was to investigate the trade off between reliability and effec-
tiveness of the protocol using a stochastic cost model. The model of [5], which
only involves a single host, is quite appropriate in capturing the probabilistic be-
havior of IP address configuration and conflict handling, but the analysis takes
place at a level that is much more abstract then the RFC. Based on an earlier
version of the present paper, a more detailed model has been presented in [20]
using the probabilistic model checker PRISM [21]. The model checking results
reported in [20] are very interesting, but the precise relationship between the
model and the RFC is unclear (for instance, in the model of [20] address defense
only occurs before a host is using an IP address). Our motivation for using Up-
PAAL instead of PRISM was that the input language of PRISM is too primitive
for our purposes (no GUI, just a few datatypes, no support of C-like syntax,..).

4 See http://developer.apple.com/networking/bonjour/.
% See http://en.wikipedia.org/wiki/Zeroconf.

A toolset that combines the functionality of UPPAAL and PRISM would be ideal
for dealing with the Zeroconf protocol.

Paper outline The organization of the paper is as follows. In Section 2 we ex-
plain the protocol and our UPPAAL model of it. In Section 3, a manual proof
of correctness of the protocol is presented. We also define an abstracted model,
which can be automatically explored in the case of 3 hosts. Finally, in Section 4
we present our conclusions and several directions for future research.

The UPPAAL models described in this paper are available on-line at

http://www.cs.ru.nl/ita/publications/papers/fvaan/zeroconf/.

2 The Protocol

In this section, we describe the Zeroconf protocol, our UPPAAL model of it,
and the relationship between our model and RFC 3927 [9], the official protocol
standard.

A Zeroconf network is composed of a set of hosts on the same link. Hosts in
the Zeroconf network can be devices that are present at home, office, embedded
systems “plugged together” as in an automobile, or the laptops of three friends
who are writing a joint paper and want to share a file. The goal of Zeroconf is to
enable networking in the absence of configuration and administration services.
The core of RFC 3927 [9] concerns the dynamic configuration of IPv4 link-local
addresses, and this is the part on which we will focus in this paper.

The basic idea of Zeroconf is trivial and easy to explain. A host that wants
to configure a new IP link-local address randomly selects an address from a
specified range and then broadcasts a few identical messages to the other hosts,
seperated by some delay, asking whether someone is already using the address.
If one of the other hosts indicates that it is using the other address, the host
starts all over again. Otherwise, it may start using the address after waiting a
certain amount of time.

One may view Zeroconf as a distributed mutual exclusion algorithm in which
the resources are IP addresses. A goal of Zeroconf is to prevent that at any point
two different hosts are using the same IP address. The underlying algorithm used
in Zeroconf is similar to Fisher’s mutual exclusion algorithm [1, 24] and makes es-
sential use of timing. However, whereas Fischer’s algorithm uses a shared variable
for communication between processes, Zeroconf uses broadcast communication.
Within Zeroconf, hosts do not aim at acquiring access to a specific critical sec-
tion (IP address); it is enough to obtain access to one of the 65024 available
critical sections (IP addresses).

2.1 Basic Modelling Assumptions

RFC 3927 assumes a set of hosts. This set is not fixed and host may join and
leave while the protocol is running. Since UPPAAL does not support dynamic

process creation, we assume a fixed number of k hosts. It may take arbitrary
long before a host becomes active in the protocol and one may argue that in
this way creation of new hosts is being captured. We do not model host failure
or termination but it would be easy to add this.® In our model, a host that
has configured an IP address may stop sending messages. From an observational
point of view this is the same as a (stopping) failure. A phenomenon that may
occur in practice, and which we have also not modeled here, is that previously
separate Zeroconf networks are joined.

The behavior of each host is modeled by three timed automata that are com-
posed in parallel: Config, InputHandler and Regular. Automaton Config models
the configuration of a new IP address, InputHandler takes care of the incoming
messages, and Regular is an abstract model of the activity of all the other pro-
cesses running on the host. All three automata are parametrized by the hardware
address of the host they belong to. For convenience, in our model a hardware
address is a natural number in the range 0 to k—1. Within UPPAAL, the scalarset
type scalar[k| denotes the set {0,...,k — 1}.

typedef scalar[k] HAType;

On scalarsets only restricted operations are permitted. As a consequence, a
scalarset is a fully symmetric type and the behavior of a model is invariant
under arbitrary permutations of the elements of a scalarset [19,17]. By defining
a scalarset type rather than a subrange, we tell UPPAAL that within our model
all the hardware addresses (and therefore also the hosts) play a fully symmetric
role, which makes it possible to exploit this symmetry during exploration of the
state space.

As already discussed in the introduction, our model abstracts from proba-
bilistic issues, and contains non deterministic choice whenever the RFC specifies
probabilistic choice.

2.2 The Network

RFC 3927 states the following assumption about the underlying network [page
4, section 1.3]:

“This specification applies to all IEEE 802 Local Area Networks (LANSs)
[802], including Ethernet [802.3], Token-Ring [802.5] and IEEE 802.11
wireless LANs [802.11], as well as to other link-layer technologies that
operate at data rates of at least 1 Mbps, have a round-trip latency of at
most one second, and support ARP [RFC826].”

The Address Resolution Protocol (ARP, [25]) is a widely used method for con-
verting protocol addresses (e.g., IP addresses) to local network (“hardware”)
addresses (e.g., Ethernet addresses). It allows dynamic distribution of the in-
formation needed to build tables to translate protocol addresses to hardware

5 Notationally it would be somewhat cumbersome as UPPAAL still lacks a notion of
hierarchical state.

addresses. Within Zeroconf all messages are ARP packets. For our model, the
relevant information in an ARP packet consists of (1) a sender hardware address,
(2) a sender IP address, (3) a target IP address, and (4) the type of the packet,
which can be either “request” or “reply”. Hence, an ARP packet can be defined
as a UPPAAL C data type as follows:

typedef struct{

HAType senderHA; // sender hardware address

IPType senderIP; // sender IP address

IPType targetIP; // target IP address

bool request; // is the packet a Request or a Reply
}ARP_packet;

Here we use the convention that the request field is true for ARP requests and
false for ARP replies. A host that is looking for the local network address of
another host with IP address z, broadcasts an ARP request packet with the
field targetIP set to z. A host with IP address x will then return an ARP reply
packet with the field senderHA set to its local network address.

In Zeroconf, all ARP packets are broadcast [page 13, section 2.5]:

“All ARP packets (*replies*™ as well as requests) that contain a Link- Lo-
cal ’sender TP address’ MUST be sent using link-layer broadcast instead
of link-layer unicast. This aids timely detection of duplicate addresses.”

We model the underlying network as a set of n identical Network automata.
Each of these automata takes care of handling a single ARP request at a time.
To express that all the automata are symmetric, we define a type

typedef scalar[k] NetworkType;

and parametrize each automaton by an element j from this type.

The main reason for having n automata is that this allows us to model round-
trip latencies in UPPAAL. Fig. 1 schematically illustrates the operation of a
Network automaton. After a request from a host comes in (send req), this is
broadcast to all hosts (receivemsg). In case there is a corresponding answer
(this may be a reply or a request packet) this is accepted (answer) and also
broadcast to all hosts (receivemsg). All these interactions take place within 1
second. After completing its task the Network automaton returns to its initial
location, ready to take care of a new request.

To simplify our model, we assume that a host handles an incoming ARP
request in zero time, i.e., we adopt the synchrony hypothesis that is well-known
from synchronous programming [4]. A desktop computer can realistically answer
an ARP in 100us. A device like a SitePlayer could take up to 10ms. Neither
have a significant impact on achieving a round-trip delay under 1s. By taking
the conceptual view that the 1s which Network may use to do its work includes
the time needed by a host to generate a reply, we avoid cumbersome modeling
of input buffers at each host.

Before explaining our UPPAAL model of the Network automaton in detail (in
Section 2.5), we now turn our attention to the core part of RFC 3927, which
concerns address configuration.

Host Host

receive_msg answer

receive_msg

Fig. 1. Interaction between Network automaton and hosts.

2.3 Address Configuration

Fig. 2 displays the automaton Config[j], which specifies how host j configures
a new IP address. Each host starts in location INIT, where it resides until it has
selected an IP address. According to the RFC [page 9, section 2.1]:

“When a host wishes to configure an IPv4 Link-Local address, it selects
an address using a pseudo-random number generator with a uniform
distribution in the range from 169.254.1.0 to 169.254.254.255 inclusive.
The IPv4 prefix 169.254/16 is registered with the TANA for this purpose.
The first 256 and last 256 addresses in the 169.254/16 prefix are reserved
for future use and MUST NOT be selected by a host using this dynamic
configuration mechanism.”

Just to keep the code simple, we abstract sligthly from the naming of IP ad-
dresses. An IP address simply is a number in the range 0 to m, where m denotes
the number of available link-local addresses:

typedef int[0,m] IPType;

The address 0 corresponds to the all zeroes IP address 0.0.0.0, which is used as a
special ‘unknown’ or ‘undefined’ value in the protocol, and the addresses 1 to m
correspond to the addresses registered with the IANA, listed in increasing order.
Due to the special role of the address 0, we cannot declare IPType as a (fully
symmetric) scalarset, and thus we declare it as a subrange instead. A transition
from location INIT to location WAIT takes place when an address has been selected.
Via the UPPAAL select statement address:int [1,m] we nondeterministically bind
identifier address to a value in the interval [1,m]. This means that there is an
instance of the transition for each number in this interval. In this way, we express
that an IP address is chosen nondeterministically. The selected address is stored
in state variable IP[j].
The RFC continues [page 11, section 2.2.1]:

counter<PROBE_NUM &&
x>=PROBE_MIN
send_req!
packet.senderHA:=j,
packet.senderl|P:=0,
packet.target|P:=IP[j],
packet.request:=true,

counter < ANNOUNCE_NUM &&
x== ANNOUNCE_INTERVAL
send_req!

packet.senderHA:=j,
packet.senderlP:=IP[j],
packet.targetlP:=IP[j],
packet.request:=true,

counter++,

IP[j]:=address,
x:=0

counter++,

-0 x:=0,
X UselP[j]:=true
x==ANNOUNCE_WAIT
counter:=0,
. counter==PROBE_NUM ConflictNum:=0,
i?ygé%ggf MAX urg! x:=ANNOUNCE_INTERVAL
~ - x:=0 O e
WAIT PROBE PRE_CLAIM N USE
x<=PROBE_WAIT x <= PROBE_MAX x<=ANNOUNCE_WAIT counter < ANNOUNCE_NUM imply
x<=ANNOUNCE_INTERVAL
reset[j]? reset[j]? reset[j]?
IP[j]:=0, IP[j]:=0, IP[j]:=0, IP[j]:=0,
address:int[1,m] x:=0 x:=0 x:=0 UselP[j]:=false

ConflictNum < MAX_CONFLICTS
urg!
ConflictNum++

COLLISION
x<=RATE_LIMIT_INTERVAL

ConflictNum >= MAX_CONFLICTS &&
x==RATE_LIMIT_INTERVAL

INIT ©\

Fig. 2. Automaton Config.

“When ready to begin probing, the host should then wait for a random
time interval selected uniformly in the range zero to PROBE_WAIT sec-
onds, and should then send PROBE_NUM probe packets, each of these
probe packets spaced randomly, PROBE_MIN to PROBE_MAX seconds
apart.”

The waiting period is modeled by resetting a local clock x upon entering location
WAIT and by bounding the time the host may stay in WAIT with an invariant x <=
PROBE_WAIT. At any point the host may move to location PROBE, where it starts
sending “probes”. The notion of an ARP Probe is specified in the RFC as follows:

“A host probes to see if an address is already in use by broadcasting an
ARP Request for the desired address. The client MUST fill in the ‘sender
hardware address’ field of the ARP Request with the hardware address
of the interface through which it is sending the packet. The ‘sender IP
address’ field MUST be set to all zeroes, to avoid polluting ARP caches
in other hosts on the same link in the case where the address turns out
to be already in use by another host. The ‘target hardware address’ field
is ignored and SHOULD be set to all zeroes. The ‘target IP address’ field
MUST be set to the address being probed. An ARP Request constructed
this way with an all-zero ‘sender IP address’ is referred to as an "ARP
Probe”.”

10

Sending ARP Probes is modeled via actions send req[j]1! that synchronize with
the network. The actual packet is communicated via a global shared variable
packet of type ARP_packet: in UPPAAL the assignments in an output (!) transi-
tion are executed before the assignments in a synchronizing input (?) transition,
and this allows us to assign a value to packet in a send req[j]! transition, which
is then picked up by a corresponding send req[j]? transition by a Network au-
tomaton. The lower and upper bounds of the probe interval are expressed in our
model with a guard x >= PROBE_MIN on the sending transition and an invariant
x <= PROBE_MAX on location PROBE, respectively. By setting x to PROBE_MAX in the
transition from WAIT to PROBE, we express that the first probe is sent immediately.
A local variable counter is used to record the number of probes that have been
sent. After the probing phase is successfully completed, the automaton jumps
to location PRE_CLAIM. The urgent broadcast channel urg ensures that this tran-
sition is taken as soon as it is enabled. As the reader can check, the translation
from the RFC description of the probing phase to UPPAAL is straightforward.
According to the RFC:

“If, by ANNOUNCE_WAIT seconds after the transmission of the last
ARP Probe no conflicting ARP Reply or ARP Probe has been received,
then the host has successfully claimed the desired IPv4 Link-Local ad-
dress.”

Clock x is used to ensure that exactly ANNOUNCE WAIT time units are spent in
location PRE_CLAIM. A transition from location PRE_CLAIM to location USE is taken
to indicate that the host has successfully claimed an address.

In our model, automaton InputHandler[j] (which will be explained in Sec-
tion 2.4) takes care of handling incoming messages. If InputHandler[j] decides
that, due to some conflict, a new address must be configured, it sends a reset[j]
signal to automaton Config[j]. Upon receiving this signal, Config[j] sets IP[j]
to 0 and jumps to location COLLISION. According to the RFC:

“A host should maintain a counter of the number of address conflicts it
has experienced in the process of trying to acquire an address, and if the
number of conflicts exceeds MAX_CONFLICTS then the host MUST
limit the rate at which it probes for new addresses to no more than one
new address per RATE_LIMIT_INTERVAL. This is to prevent catas-
trophic ARP storms in pathological failure cases, such as a rogue host
that answers all ARP Probes, causing legitimate hosts to go into an
infinite loop attempting to select a usable address.”

A counter ConflictNum is used in our model to record the number of conflicts that
have occurred during the process of acquiring an IP address. Depending on the
value of ConflictNum, the automaton returns to location INIT immediately or first
waits for RATE_LIMIT_INTERVAL time units. Again, the correspondence between the
RFC text and our UPPAAL model is straightforward.

In location USE the host announces the new address that it has just claimed
[page 12, section 2.4]:

11

“Having probed to determine a unique address to use, the host MUST
then announce its claimed address by broadcasting ANNOUNCE_NUM
ARP announcements, spaced ANNOUNCE_INTERVAL seconds apart.
An ARP announcement is identical to the ARP Probe described above,
except that now the sender and target IP addresses are both set to the
host’s newly selected IPv4 address. The purpose of these ARP announce-
ments is to make sure that other hosts on the link do not have stale ARP
cache entries left over from some other host that may previously have
been using the same address.”

The RFC does not specify upper and lower bounds on the time that may elapse
between sending the last ARP Probe and sending the first ARP Announcement.
However, according to the protocol designers upper and lower bound both equal
ANNOUNCE_WAIT [8]. Also, the RFC does not specify whether a host may imme-
diately start using a newly claimed address (in parallel with sending the ARP
Announcements), or whether it should first send out all announcements. Ac-
cording to the designers, a host should send the first ARP Announcement, and
then it can immediately start using the address [8]. So the second announcement
goes out ANNOUNCE_INTERVAL seconds later, but other traffic does not need to be
held up waiting for that. Finally, the RFC does not specify the tolerance that
is permitted on the timing of ARP Announcements. Since no physical device
can consistently send messages spaced exactly ANNOUNCE_INTERVAL seconds apart,
strictly speaking it is impossible for an implementation to conform to the RFC.
According to the designers, the RFC does not specify accuracy requirements,
partly because the protocol is robust to a wide range of variations, so it does
not matter [8]. We decided to follow the RFC and not specify accuracy require-
ments, but if someone wants to use our model for automatic generation of tests,
for instance using the UPPAAL-TRON toolset [23], he or she will have to modify
our model at this point.

With this additional information, the modeling of the announcement phase
in UPPAAL is straightforward and analogous to that of the probing phase. After
sending the first announcement, Boolean variable UseIP[j] is set to true. This
enables automaton Regular[j], displayed in Fig. 3, to start sending out regular
ARP requests packets with the senderIP field set to IP[j] and the targetIP field
set to an arbitrary link-local address. However, even when a host is using an IP
address still at any moment a conflict may arise. When this happens automaton
Config[j] returns to its initial location and UseIP[j] is set to false again.

2.4 Input Handler

Automaton InputHandler [j] receives incoming ARP packets and decides what to
do with them. Input handling is described at various places in RFC 3937, which
makes it nontrivial to determine the reaction to an arbitrary ARP packet, also
because Zeroconf runs on top of the ARP protocol, which it sometimes follows
but sometimes overrules. Automaton InputHandler is displayed in Fig. 4. When
a new packet arrives, that is, when a receive msg[j]? transition occurs, the au-
tomaton calls a function ihandler to find out what to do. This function computes

12

address:int[1,m]

UselPJj]

send_req!
packet.senderHA:=j,
packet.senderlP:=IP[j],
packet.targetIP:=address,
packet.request:=true

Fig. 3. Automation Regular[j].

response==true response==true
answer! answer!
packet.targetlP:=packet.senderlP, packet.senderHA:=j,
packet.senderHA:=j, packet.senderlP:=IPJj],
packet.senderIP:=IP[j], y:=DEFEND_INTERVAL + 1 Packet.targetlP:=IP[j],
packet.request:=false pac(l)&et.request::true,
y=

response==false
no_answer!

response==false
reset[j]! a no_answer!
C

</

y>DEFEND_INTERVAL
receive_msg[j]?
ihandler(true)

receive_msg[j]?
ihandler(false)

conflict==false conflict==true

Fig. 4. Automaton InputHandler[j].

two bits, conflict and response: if conflict==true then some other host is using
or trying to use the IP address the host has selected and if response==true then
a packet will be send in response. Thus the value of the two bits determines the
reaction of the input handler to the incoming packet:

1. If conflict==true and response==false, a reset[j] signal is sent.

2. If conflict==true and response==true, an ARP Announcement is broadcast.
3. If conflict==false and response==true, an ARP Reply is broadcast.

4. If conflict==false and response==false, the packet is ignored.

The definition of ihandler is listed in Fig. 5. Function ihandler has a parameter
defend which may be either false or true. This parameter, which indicates that
a host will defend its IP address in case of a conflicting ARP request, may be
true only if there has been no other conflict during the last DEFEND_INTERVAL time
units. Clock y is used to measure the time since the last conflict. Altogether, the
input handler has to distinguish 9 scenarios.

13

void ihandler(bool defend)
{
if (IP[j]==0) // Scenario A: I have not selected an IP address
{response:=false; conflict:=false;}
else if (packet.senderHA==j) // Scenario B: I have sent the packet myself
{response:=false; conflict:=false;}
else if (packet.senderIP==IP[j]) //There is a conflict: somebody else is using my IP address!
{
conflict:=true;
if (not UseIP[jl) // Scenario C: select a new address
response:=false;
else if (defend) // Scenario D: I am going to defend my address
response:=true;
else // Scenario E: I will not defend my address
response:=false;
}
else if (not UseIP[j])
{
response:=false;
if (packet.targetIP==IP[j] && packet.request && packet.senderIP==0) // Scenario F: conflicting probe
conflict:=true;
else //Scenario G: Packet is not conflicting with IP address that I want to use
conflict:=false;
}
else // Incoming packet is not conflicting with IP address that I am using
{
conflict:=false;
if (packet.targetIP==IP[j] && packet.request) // Scenario H: answer regular ARP request
response:=true;
else // Scenario I: no reply message required
response:=false;

}

Fig. 5. Function ihandler.

Scenario A. Clearly, if a packet comes in when a host has not yet selected an
IP address it should be ignored. This scenario is not listed explicitly in the RFC
but should be obvious.

Scenario B. Packets that a host has sent itself can be ignored. Also this scenario
is implicit in the RFC.

Scenario C. A conflict may arise when another host sends a packet with the
senderIP field set to IP[j]. This occurs in Scenario C, which is described on
[page 11, section 2.2.1]:

“If during this period, from the beginning of the probing process until
ANNOUNCE_WAIT seconds after the last probe packet is sent, the host
receives any ARP packet (Request *or* Reply) on the interface where
the probe is being performed where the packet’s ‘sender IP address’ is
the address being probed for, then the host MUST treat this address as
being in use by some other host, and MUST select a new pseudo-random
address and repeat the process.”

14

Scenarios D and E. In the previous scenario, UseIP[jl==false. The case with
UseIP[jl==true is also described in the RFC [page 12, section 2.5]:

“Address conflict detection is not limited to the address selection phase,
when a host is sending ARP Probes. Address conflict detection is an on-
going process that is in effect for as long as a host is using an IPv4
Link-Local address. At any time, if a host receives an ARP packet (re-
quest *or* reply) on an interface where the ‘sender IP address’ is the IP
address the host has configured for that interface, but the ‘sender hard-
ware address’ does not match the hardware address of that interface,
then this is a conflicting ARP packet, indicating an address conflict.

A host MUST respond to a conflicting ARP packet as described in either
(a) or (b) below:

(a) Upon receiving a conflicting ARP packet, a host MAY elect to im-
mediately configure a new IPv4 Link-Local address as described above,
or

(b) If a host currently has active TCP connections or other reasons to
prefer to keep the same IPv4 address, and it has not seen any other
conflicting ARP packets within the last DEFEND_INTERVAL seconds,
then it MAY elect to attempt to defend its address by recording the time
that the conflicting ARP packet was received, and then broadcasting one
single ARP Announcement, giving its own IP and hardware addresses
as the sender addresses of the ARP. Having done this, the host can then
continue to use the address normally without any further special action.
However, if this is not the first conflicting ARP packet the host has seen,
and the time recorded for the previous conflicting ARP packet is recent,
within DEFEND_INTERVAL seconds, then the host MUST immediately
cease using this address and configure a new IPv4 Link-Local address
as described above. This is necessary to ensure that two hosts do not
get stuck in an endless loop with both hosts trying to defend the same
address.

A host MUST respond to conflicting ARP packets as described in either
(a) or (b) above. A host MUST NOT ignore conflicting ARP packets.”

Case (a) corresponds to our scenario E. This scenario occurs when the right
receive msg? transition in the automaton is taken, which sets defend to false,
Case (b) corresponds to scenario D. This scenario occurs when the left receive msg?
transition is taken, which sets defend to true.

The interpretation of the sentence “and it has not seen any other conflicting
ARP packets within the last DEFEND_INTERVAL seconds” in the previous
quotation from the RFC is not entirely clear. Is a host allowed to defend its
address if there has been a recent conflict concerning a different address (but no
previous conflict concerning the current address)? Strictly speaking, the host has
seen a conflicting packet and it may not defend. However, the conflict concerned a
different address, and the motivation for recording the time since the last conflict
has been to rule out a scenario in which two hosts get stuck in an endless loop
trying to defend the same addess. Thus one could also argue that in this situation

15

a host may defend its address. To model this interpretation, one would have to
add an assignment y := DEFEND_INTERVAL+1 to the reset transition of the input
handler.

Scenarios F and G. The RFC specifies one more conflict scenario [page 11,
section 2.2.1]:

“In addition, if during this period [from the beginning of the probing
process until ANNOUNCE_WAIT seconds after the last probe packet
is sent] the host receives any ARP Probe where the packet’s ‘target
IP address’ is the address being probed for, and the packet’s ‘sender
hardware address’ is not the hardware address of the interface the host
is attempting to configure, then the host MUST similarly treat this as
an address conflict and select a new address as above. This can occur
if two (or more) hosts attempt to configure the same IPv4 Link-Local
address at the same time.”

In the ihandler code, this corresponds to scenario F. Scenario G, which is implicit
in the RFC, occurs when the incoming packet is not conflicting and the host is
not yet using an IP address. In this case the incoming packet is ignored.

Scenario H and I. The Address Resolution Protocol (RFC 826) [25] specifies
that if a host receives an ARP request packet, it should return an ARP reply
packet if it uses an IP address that equals the target protocol address of this
request. In the reply packet the hardware and protocol field should be swapped,
putting the local hardware and protocol addresses in the sender fields. Zeroconf
(RFC 3927) is not explicit about conformance to RFC 826, but in our model
we take the view that once a host is using an IP address, it answers regular
ARP requests in agreement with RFC 826 except when (a) the request has been
broadcast by the host itself, or (b) there is a conflict. This is scenario H in our
model. The final Scenario I occurs when the incoming packet is not conflicting
with the IP address that the host is using, and no reply packet needs to be sent.

Note that in automaton InputHandler[j] some of the locations are committed
(C). In UPPAAL, when a system reaches a committed location, the next transi-
tion has to be an outgoing transition from that location.” The use of committed
locations here is a modeling trick. When a network automaton delivers a packet
to an input handler via a receive msg synchronization, the input handler has
to return an answer (if there is one) instantaneously (by the synchrony hypoth-
esis). But since in general there are many network automata active, we need
to ensure that the answer is picked up by the right automaton. Introducing
separate channel names for each network automaton or pi-calculus like private
channels would create too much overhead. Our trick is that a network automaton
may only synchronize on an answer action right after performing a receive msg
action. By making the locations of the input handler following a receive msg

7 Or from a committed location from another component, but such a situation does
not occur in our model.

16

transition committed, we ensure that the reply is picked up by the right network
automaton. Essentially, the receive msg and answer synchronizations take place
in a single atomic transaction. In case the input handler does not generate an
answer, it uses a no_answer action to inform the network automaton about this.
This synchronization is an artifact of our model since in reality no signal is sent
in this case.

2.5 The Network Automaton

The Network automaton is shown in Fig. 6. Initially the automaton is in its IDLE

answer?
answer_buffer:=packet

send_req? no_answer?
send_buffer:=packet,
z:=0
QO C
IDLEQ\ o DELIVER host:HAType
urg! 2<=1 sent[host]==false

receive_msg[host]!
.al!isent() sent[host]:=true,
init_vars() packet:=send_buffer
no_answer? host:HAType
answer_buffer.senderlP!=0 && replied[host]==false
receive_msg[host]!
replied[host]:=true,
packet:=answer_buffer

C

Fig. 6. The Network automaton.

location. As soon as it receives a packet from a host via send_req, it jumps to
the DELIVER location. Since there is no lower bound on message delivery time,
message delivery may start immediately. A local clock z is reset to zero and
an invariant z < 1 ensures that within 1 second the network broadcasts the
packet (and the answer if there is one) to all hosts. In our model we assume
that there is at most one host that wants to answer any given request, and
that an answer does not induce subsequent answers. It is possible to modify the
Network automaton so that it can handle multiple and successive answers, but
this requires additional state variables and more complicated data structures.
Our Network automaton has two local buffers: send buffer stores the packet
that was sent by the host and answer_buffer stores an answer when it arrives.
In addition, Network maintains Boolean arrays sent and replied to records to
which hosts the packets have already been delivered. Using the UPPAAL select

17

statement, the automaton non deterministically selects in which order a packet
is delivered to the different hosts. A host may return an answer upon receipt
of a request, as explained in Subsection 2.4. The lower transition labeled with
receive msg is enabled as soon as there is an answer packet in answer buffer.
The network returns to its IDLE location and resets its buffers, as soon as all
messages have been sent. This is checked by the Boolean function all_sent:

bool all_sent(){
// the request packet has been sent to all
// and if there is an answer it has been sent to all
return ((forall (i : HAType) sent[i]) and
((answer_buffer.senderIP!=0) imply
(forall (i : HAType) replied[il))); }

Upon return to the IDLE location all variables are re-initialized.

2.6 Dimensioning the Complete Model

The RFC [page 25, section 9] specifies the following values for the different
timing constants. These definitions are copied almost verbatim in the UPPAAL
declaration section of our model.

"PROBE_WAIT 1 second (initial random delay)

PROBE_NUM 3 (number of probe packets)

PROBE_MIN 1 second (minimum delay till repeated probe)
PROBE_MAX 2 seconds (maximum delay till repeated probe)
ANNOUNCE_WAIT 2 seconds (delay before announcing)
ANNOUNCE_NUM 2 (number of announcement packets)

ANNOUNCE_INTERVAL 2 seconds (time between announcement packets)

MAX_CONFLICTS 10 (max conflicts before rate limiting)
RATE_LIMIT_INTERVAL 60 seconds (delay between successive attempts)
DEFEND_INTERVAL 10 seconds (minimum interval between defensive ARPs)."

In general, a Zeroconf network has 65024 TP addresses available and it is suit-
able for up to 1300 hosts [9]. These values are too big for automatic verification
and with 3 hosts and 65024 IP addresses also the UPPAAL simulator runs out of
memory.

A next issue regarding the dimensioning of the model is the number n of
Network automata, i.e., the maximal number of ARP requests that may be in
transit at any given point. In our model, a host may select an IP address, send
a probe, and return to the initial location via a reset in zero time. In fact, this
behavior may be repeated MAX_CONFLICTS times in a row in zero time. Once a
host is using an IP address, the number of messages in transit may increase even
further (in fact unboundedly) since there is no lower bound on the time between
successive ARP requests. UPPAAL forces us to bound the number of Network
automata to some number n.

3 Verification

The model described in Section 2 is very close to the RFC definition of the
protocol. However, as a result the model is too big for UPPAAL to do a complete

18

state space exploration for nontrivial instances, even when we use symmetry
reduction.

The RFC specification of the protocol does not specify what properties the
protocol must satisfy. However, it is clear that at least the following two correct-
ness properties are desirable:®

1. Mutual exclusion, i.e., no two hosts may use same IP address. This can be
specified in UPPAAL as follows:

ME = A[] forall (i: HAType) forall (j: HAType)
(UseIP[i] && UseIP[j] && IP[i]==IP[j]) imply i==j

2. The network has no deadlock, i.e, in each reachable state a transition is
possible. Or in UPPAAL syntax:

DL = A[] not deadlock

Using the latest version of UPPAAL (3.6 beta), we only managed to establish
ME and DL for the instance with 2 hosts, 1 IP address and 2 network automata.
Nevertheless, it is rather obvious that Zeroconf satisfies the mutual exclusion
property and is free of deadlocks. In the remainder of this section, we first present
a sketch of a manual proof of mutual exclusion and then describe an abstracted
version of our model that can be fully explored by UPPAAL in the case of 3 hosts
and used to prove mutual exclusion automatically for this instance. We claim
that the full model has no deadlocks but do not present the (long and tedious)
proof here. Since the abstract model overapproximates the full model, absence
of deadlock in the first does not imply absence of deadlock in the second.

3.1 Manual Proof of Mutual Exclusion

Theorem 1. For each instance of our Zeroconf model (i.e., any number of IP
addresses, any number of hosts, and any number of network automata), the mu-
tual exclusion property ME holds.

Proof. (Sketch) Suppose i and j are hardware addresses with i !'= j, and sup-
pose that in some reachable state s, UseIP[i], UseIP[j] and IP[i]=IP[j]. We
derive a contradiction. Consider an execution « leading up to state s, i.e., a
finite sequence of delay and action transitions in the semantics of the model
leading from the start state to s. Without loss of generality, we may assume
that host j enters the critical section before (but possibly at the same time as)
i. Observe that before a host enters the “critical section” (where it uses an IP
address) it resides at least 6 time units in the “trying region” (where it has se-
lected an IP address but is not yet using it). Formally, the trying region of host
i is characterized by the predicate

8 Mutual exclusion will not hold in an extension of our model in which Zeroconf
networks can be merged. In such an extension the specification should be weakened:
mutual exclusion may be violated after a join, but as soon as the violation is detected
(due to an ARP packet) mutual exclusion will be restored within a specified amount
of time (provided meanwhile no further joins occur).

19

Config(i) .WAIT || Config(i).PROBE || Config(i).PRE_CLAIM ||
(Config(i) .USE && Config(i).counter==0)

and the critical section by
Config(i).USE && Config(i).counter>0

Moreover, exactly 2 time units before entering the critical section, a host sends
a (in fact, the last) probe packet.

Assume that host i is in its critical section from time t0 onwards, and is in
its trying region from time t1 to t0. Similarly, host j is in its critical section from
time u0 onwards, and is in its trying region from time ul to w0. Let ¢ be the
time at which host i sends its last probe and let u be the time at which this
probe is received by the input handler of host j. Then we have the following
(in)equalities:

t0 > u0
t0>tl1+6
u0 > ul +6
t=1t0—2
u>t
t>u—1

We consider two cases:

1. See Figure 7. The last probe arrives at host j before it enters the critical
section. Then j must be in its trying region since:

u>t=t0—2>u0—2>u0—6>ul.

But this means that host j’s input handler, upon receipt of the conflicting
probe, will generate a reset (Scenario F) and drive Config(j) back to its
initial state, i.e, out of the trying region. Contradication.

2. See Figure 8. The last probe arrives at host j after it enters the critical
section. But this means that host j’s input handler, upon receipt of the
probe, will return a reply message (Scenario H). Since we assume a roundtrip
delay of at most 1 time unit, this reply message will arrive at i at some time
t’ with ¢/ <t + 1. At time ¢’ host i is still in its trying region since

H=t+2>t+1>t'>t=t0—2>1t0—6>tl.

Hence, the input handler will generate a reset upon receipt of this reply
message (Scenario C) and drive Config(i) back to its initial state, i.e, out of
its trying region. Contradication. QED

Formalization/mechanization of the proof of Theorem 1, for instance in PVS
using the basic setup of [28], should be a routine exercise.

20

Host i Host j

tl
t u
\
u0
o I I

Fig. 7. Last probe arrives at j before it enters critical section.

Host i Host j
ul
t1
t
u u0
10 v

Fig. 8. Last probe arrives at j after it enters critical section.

21

Inspection of the proof indicates that Zeroconf is extremly robust: the proto-
col has been designed to handle all kinds of error scenarios (loss of messages, fail-
ure of hosts, merge of networks) which do not occur within our idealized model.
Without these errors, it suffices (for mutual exclusion) to send out a single probe
(PROBE_NUM=1), there is no need for sending announcements (ANNOUNCE_NUM=0), and
a host may start using an address after waiting any time longer than the max-
imal communication delay. For a model of this simplified protocol with 3 hosts
UPPAAL can verify ME and DE in a few seconds on a standard PC.

3.2 Abstractions

To make automatic verification of mutual exclusion possible for the full protocol
in the case with 3 hosts, we applied a combination of several abstractions (on
top of the abstractions that are already applied by UpPAAL). Also, we had to
make the additional assumption that at any time for each host there is at most
one outgoing message in transit. This allows us to associate a single network
automaton to each host, which only accepts packets from this host when empty.

Dead Variable Reduction Dead variable reduction is a well known static
analysis technique, that has for instance been studied in the PhD thesis of Yorav
[29]. In Yorav’s terminology, a variable v is used in a transition if it appears in
the guard or in the right hand side of an assignment. Variable v is defined in
a transition if it is in the left hand side of an assignment. Notice that in an
assignment v := v+ 1, v is first used, and then it is defined. A variable v is said
to be dead at alocation [if on every execution path from [, v is defined before it is
used, or is never used at all. Clearly, systems that only differ in the values of dead
variables are equivalent in a very strong sense (bisimilar). In our Zeroconf model,
variable counter of Config(j) is dead in locations COLLISSION and INIT. Hence,
setting counter:=0 upon occurrence of a reset transition will not affect whether
the ME property holds or not. Another example are the variable conflict and
response, which are dead in the non-urgent locations of InputHandler(j), and
can be reset to false upon entering these locations. Finally, variable packet is
only used within synchronization transitions and it can be set to a default value
following each transition.

Overapproximation By weakening guards or by making an urgent channel
non-urgent, we add behavior to an automaton. If we manage to prove an invariant
for the larger (“overapproximated”) automaton it will certainly hold for the
smaller, original automaton. If, as a result of weakening, a variable is tested in
none of the transitions and it also does not occur in the invariant that we are
trying to prove, it can be safely omitted from the model. In the case of Zeroconf,
overapproximation and subsequent variable elimination can be applied in the
following two situations:

1. We may weaken the guards of the two transitions from COLLISION to INIT
in Config(j) to true, and remove the transition label urg!. In the resulting

22

model local variable ConflictNum is no longer used and so we can abstract it
away.

2. We may weaken the guard of the left receive msg[jl7? transition in automa-
ton InputHandler(j) to true. In the resulting model local clock y is no longer
used and it can be abstracted away.

3. Once a host starts to use the claimed IP address (after the first announce-
ment), the remaining announcements can be seen as ARP packets sent by
automaton Regular.

The basic idea behind abstractions (1) and (2) is that Zeroconf ensures mutual
exclusion even when a host is allowed to always immediately select a new IP
address after a reset, and may always defend the IP address that it is using.

Verification Results Using the combination of the above abstractions, we were
able to prove mutual exclusion for instances of Zeroconf with 2 hosts and up to
5 IP addresses, and an instance with 3 hosts and 1 IP address.

We also did some experiments with the use of symmetry reduction for IP ad-
dresses. Since in Zeroconf the IP address 0 (i.e., 0.0.0.0) plays a special role, and
UPPAAL can only handle fully symmetric data types, this required some rewrit-
ing of the model. Using symmetry reduction for IP addresses, we were able to
establish mutual exclusion for a system with 2 hosts and an arbitrary number of
IP addresses. Essentially, this is due to a theorem of Ip and Dill [19] on data sat-
uration. This theorem (which was proved in the setting of Murphi but can easily
be shown to carry over to UPPAAL) states that for certain (“data”) scalarsets,
the state graph does not grow any further once the size of the scalarsets grows
beyond the number of scalarset locations in the system. In the case of 2 hosts,
the number of scalarset locations for IP addresses in the model equals 12 (1 for
each Config[j] automaton, 4 for each Network automaton, and 2 for the packet
variable). In fact, data saturation already happens starting from scalarsets of
size 5.

Actually, we conjecture that there exists a bisimulation between a model with
n IP addresses, for any n, and the model with just one (nonzero) IP address, via
which a proof of ME for the general model can be reduced to a proof of ME for
the model with just one address.

4 Conclusions

Our goal has been to construct a model of Zeroconf that (a) is easy to understand
by engineers, (b) comes as close as possible to RFC 3927, and (c) may serve as
a basis for formal verification. Did we succeed?

Understandability Of course, it is not to us to judge whether our model is un-
derstandable for others. The present paper aims to place the cards on the table
as a basis for a discussion. The UPPAAL syntax, which combines extended finite
state machines, C-like syntax and concepts from timed automata, will certainly

23

be familiar to protocol engineers, except maybe for the use of clock variables.
However, our experience is that timed automata notation is easy to explain, also
to people without expertise in theoretical computer science. Clocks provide a
simple and intuitive means to specify the various timing constraints in Zero-
conf. The automata Config and InputHandler would be the obvious candidates
for inclusion in a standard. The only elements in these automata which may be
considered less intuitive are the use of committed locations in the InputHandler
and the sending of a no_reply signal in situations where no reply packet is sent
(this is an artifact of the model since in reality there is no such signal). However,
we can easily remove these elements from the InputHandler automaton at the
price of making the Network automata (considerably) more complicated.

There are a number of extensions of the UPPAAL syntax that would help us
to further improve the readability of our model:

— A richer syntax for datatypes, for instance permitting us to write 0.0.0.0 for
the all zero IP address instead of 0.

— The ability to initialize clock variables, allowing us to eliminate the initial
transition in the InputHandler[j] automaton.

— The ability to test the value of clocks within the body of functions, allowing
us to move the test y>DEFEND_interval into the definition of ihandler, where
it belongs conceptually.

— The introduction of urgent transitions in UPPAAL, as advocated in [16]. This
would allow us to eliminate the urgent channel urg, which is a modeling
trick that is hard to explain to non-specialists. Also, it would allow us to
replace the invariant counter < ANNOUNCE NUM imply x <= ANNOUNCE_INTERVAL
in automaton Config by an urgency predicate x <= ANNOUNCE_INTERVAL. In
our opinion urgency predicates are more intuitive than location invariants.

Once these extensions have been implemented, a good case can be made for
inclusion of the Config and InputHandler automata (with the ihandler code)
in a Zeroconf standard. These models definitely help to clarify the RFC and
to prevent incorrect interpretations due to ambiguity in the textual part. The
UPPAAL simulator is also very useful to obtain insight in the operation of the
protocol.

Our modeling efforts revealed five places where RFC 3927 [9] is incom-
plete/unclear:

1. It does not specify upper and lower bounds on the time that may elapse
between sending the last ARP Probe and sending the first ARP Announce-
ment.

2. It does not specify whether a host may immediately start using a newly
claimed address or whether it should first send out all ARP Announcements.

3. It does not specify the tolerance that is permitted on the timing of ARP
Announcements.

4. Although it states that Zeroconf requires an underlying network that sup-
ports ARP (RFC 826), we identified some cases where Zeroconf does not
conform to RFC 826.

5. It is not exactly clear in which situations a host may defend its address.

24

Faithfulness and Traceability We have shown that UPPAAL is able to model Ze-
roconf faithfully. Basically, for each transition in the model we can point towards
a corresponding piece of text in the RFC. The relationships between our model
and the RFC have been described in great detail in this paper, including the
design choices and abstractions that we made. Following [6], our aim has been
to make the model construction transparent, so that our model may be more
easily understood and checked by others, making its quality measurable in (at
least) an informal sense.

We see at least three ways in which UPPAAL can be improved to allow for
even more faithful/realistic modeling of Zeroconf and better traceability:

— Zeroconf involves a number of probabilistic aspects that are not incorporated
in our UPPAAL model. An extension with probabilities, along the lines of
PRISM [21], is clearly desirable.

— UPPAAL supports modeling of systems that are described as networks of a
fized number of automata with a fized communication structure. This mod-
eling approach, although very convenient as a starting point for verification,
does not fit very well with the highly dynamic structure of Zeroconf networks
where hosts may join and leave, subnetworks may be joined, etc.

— To support traceability it would help to add a feature to UPPAAL by which
comments are displayed when a user clicks on (or points at) a transition.

The first two items require a major research effort, whereas the last item should
be easy to implement.

Complezity and Tractability The formal model of Zeroconf that we presented in
Section 2 cannot be analyzed by UPPAAL for interesting instances with 3 or more
hosts. We presented a simple manual proof of mutual exclusion for the model
that we considered in this paper (no message loss, host failure and merging of
networks). In order to verify a system with 3 hosts, we had to apply some drastic
abstractions. We have argued informally that these abstractions are sound.

A challenging question for us is to come up with (automatically generated)
additional abstractions that allow for the automated analysis of larger instances
of the protocol. One possibility here would be to try to apply the technique
of counterexample guided abstraction refinement [14,13]. A basic idea in the
design of Zeroconf is that it does not harm to send additional ARP messages;
they have only been added because they may help to ensure (or restore) mutual
exclusion in the case of faults. Thus far, we have not been able to come up with
abstractions that capture this idea.

In our view, it is highly desirable to extend UPPAAL with (semi-)automatic
support for proving correctness of abstractions. Only abstractions can bridge the
gap between realistic and tractable models.

Future Work In this paper, we have only modelled/analyzed a few simple in-
stances of a part of Zeroconf in a restrictive setting without faulty nodes, merging
of subnetworks, etc. So clearly, there are many directions in which our modeling

25

effort can be extended. The timing behavior of Zeroconf becomes really inter-
esting when studied within a setting in which also the probabilistic behavior
is modelled. The performance analysis of Zeroconf reported in [5,20] has been
carried out for an abstract probabilistic model of Zeroconf. A challenging ques-
tion is whether these results also hold for a (probabilistic extension) of our more
realistic model.

Acknowledgments We thank Peter van der Stok (Philips Research) for suggesting
the problem to us, Stuart Cheshire (Apple Computer, Inc.) and Boris Cobbelens
(Free University, Amsterdam) for answering all our questions about Zeroconf.
Martijn Hendriks, Jasper Berendsen, Jozef Hooman and the students of the
Analysis of Embedded Systems course in Nijmegen commented on earlier ver-
sions and came with modeling suggestions. Martijn also helped with UPPAAL
and noted the occurrence of data saturation. Guy Leduc, Hubert Garavel, Judi
Romijn and Ken Turner commented on the use of formal description languages
within protocol standards.

References

1. M. Abadi and L. Lamport. An old-fashioned recipe for real time. ACM Transac-
tions on Programming Languages and Systems, 16(5):1543-1571, September 1994.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

3. G. Behrmann, A. David, and K.G. Larsen. A tutorial on Uppaal. In Marco
Bernardo and Flavio Corradini, editors, Formal Methods for the Design of Real-
Time Systems, International School on Formal Methods for the Design of Com-
puter, Communication and Software Systems (SFM-RT 2004), Bertinoro, Italy,
September 13-18, Rewvised Lectures, volume 3185 of Lecture Notes in Computer
Science, pages 200-236. Springer, 2004.

4. G. Berry and G. Gonthier. The ESTEREL synchronous programming language:
design, semantics, implementation. Science of Computer Programming, 19(2):87—
152, November 1992.

5. H. Bohnenkamp, P. van der Stok, H. Hermanns, and F.W. Vaandrager. Cost-
optimisation of the IPv4 zeroconf protocol. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN2003), pages 531-540, Los
Alamitos, California, 2003. IEEE Computer Society.

6. E. Brinksma and A. Mader. On verification modelling of embedded systems. Tech-
nical Report TR-CTIT-04-03, Centre for Telematics and Information Technology,
Univ. of Twente, The Netherlands, January 2004.

7. G. Bruns and M.G. Staskauskas. Applying formal methods to a protocol standard
and its implementations. In Proceedings International Symposium on Software
Engineering for Parallel and Distributed Systems (PDSE 1998), 20-21 April, 1998,
Kyoto, Japan, pages 198-205. IEEE Computer Society, 1998.

8. S. Cheshire. Personal communication, February 2006.

9. S. Cheshire, B. Aboba, and E. Guttman. Dynamic configuration of IPv4 link-local
addresses (RFC 3927), May 2005. http://wuw.ietf.org/rfc/rfc3927.txt.

10. S. Cheshire and D.H. Steinberg. Zero Configuration Networking: The Definite
Guide. O’Reilly Media, Inc., 2005.

26

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

D. Chkliaev, J. Hooman, and E. de Vink. Verification and improvement of the
sliding window protocol. In Proceedings TACAS’03, pages 113-127. Lecture Notes
in Computer Science 2619, Springer-Verlag, 2003.

E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and
L. A. Ness. Verification of the Futurebus+ cache coherence protocol. In Proc.
CHDL, pages 15-30, 1993.

E.M. Clarke, A. Fehnker, Z. Han, B.H. Krogh, J. Ouaknine, O. Stursberg, and
M. Theobald. Abstraction and counterexample-guided refinement in model check-
ing of hybrid systems. Int. J. Found. Comput. Sci., 14(4):583-604, 2003.

E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In E. Allen Emerson and A. Prasad Sistla, editors, Com-
puter Aided Verification, 12th International Conference, CAV 2000, Chicago, IL,
USA, July 15-19, 2000, Proceedings, volume 1855 of Lecture Notes in Computer
Science, pages 154—169. Springer, 2000.

M.C.A. Devillers, W.O.D. Griffioen, J.M.T Romijn, and F.W. Vaandrager. Verifi-
cation of a leader election protocol: Formal methods applied to IEEE 1394. Formal
Methods in System Design, 16(3):307-320, June 2000.

B. Gebremichael and F.W. Vaandrager. Specifying urgency in timed I/O automata.
In Proceedings of the 3rd IEEE International Conference on Software Engineering
and Formal Methods (SEFM 2005), Koblenz, Germany, September 5-9, 2005, pages
64-73. IEEE Computer Society, 2005.

M. Hendriks, G. Behrmann, K.G. Larsen, P. Niebert, and F.W. Vaandrager.
Adding symmetry reduction to uppaal. In Kim Guldstrand Larsen and Peter
Niebert, editors, FORMATS, volume 2791 of Lecture Notes in Computer Science,
pages 46-59. Springer, 2003.

G.J. Holzmann. The Spin model checker: primer and reference manual. Addison-
Wesley, 2003.

C.N. Ip and D.L. Dill. Better verification through symmetry. In David Agnew, Luc
J. M. Claesen, and Raul Camposano, editors, Computer Hardware Description Lan-
guages and their Applications, Proceedings of the 11th IFIP WG10.2 International
Conference on Computer Hardware Description Languages and their Applications -
CHDL ’93, sponsored by IFIP WG10.2 and in cooperation with IEEE COMPSOC,
Ottawa, Ontario, Canada, 26-28 April, 1993, volume A-32 of IFIP Transactions,
pages 97-111. North-Holland, 1993.

M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance analysis
of probabilistic timed automata using digital clocks. In K. Larsen and P. Niebert,
editors, Proc. Formal Modeling and Analysis of Timed Systems (FORMATS03),
volume 2791 of LNCS, pages 105-120. Springer-Verlag, 2003.

M.Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 2.0: A tool for probabilistic
model checking. In Proceedings of the 1st International Conference on Quantitative
Evaluation of Systems (QEST04), pages 322-323. IEEE Computer Society, 2004.
I. van Langevelde, J.M.T. Romijn, and N. Goga. Founding FireWire bridges
through Promela prototyping. In 8" International Workshop on Formal Methods
for Parallel Programming: Theory and Applications (FMPPTA). IEEE Computer
Society Press, April 2003.

K.G. Larsen, M. Mikucionis, and B. Nielsen. Testing real-time embedded software
using UPPAAL-TRON: an industrial case study. In the 5th ACM International
Conference on Embedded Software, pages 299 — 306. ACM Press New York, NY,
USA, September 18-22 2005.

N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San
Fransisco, California, 1996.

25.

26.

27.

28.

29.

27

D.C. Plummer. An Ethernet address resolution protocol (RFC 826), November
1982. http://www.ietf.org/rfc/rfc826.txt.

J.M.T. Romijn. Improving the quality of protocol standards: Correct-
ing IEEE 1394.1 FireWire net update. Nieuwsbrief van de Nederlandse
Vereniging wvoor Theoretische Informatica, 8:23-30, 2004. Available at
http://www.win.tue.nl/oas/index.html?iqgps/.

M. Stoelinga. Fun with FireWire: A comparative study of formal verification
methods applied to the IEEE 1394 root contention protocol. Formal Aspects of
Computing Journal, 14(3):328-337, 2003.

F.W. Vaandrager and A.L. de Groot. Analysis of a biphase mark protocol with
Uppaal and PVS. Formal Aspects of Computing Journal, 2006. To appear. Also
available as Technical Report NIII-R0445, NIII, Radboud University Nijmegen,
2004.

K. Yorav. Ezploiting Syntactic Structure for Automatic Verification. PhD thesis,
The Technion, Israel Insitute of Technology, June 2000.

